Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling plant reactions to injury

30.05.2011
Identification of a key compound that regulates plant responses to wounding could provide benefits on three fronts

Better understanding of plant defense systems, and the potential to generate stress-tolerant plants and even new malaria drugs, may all stem from the documentation of a molecular mechanism that plays a significant role in the response of plants to physical injuries, such as cuts. A team of agricultural researchers in Japan, led by Fuminori Takahashi of the RIKEN Plant Science Center in Tsukuba, found that the key protein in the complex mechanism is MPK8, which is fully activated by two signaling pathways working in concert[1].

The researchers showed that MPK8 is activated while the wounded plant mounts an initial emergency response to an injury. Around the fresh wound, the plant produces reactive oxygen species (ROS), such as hydrogen peroxide. These highly toxic compounds kill any pathogens that could access internal tissues via the wound site. However, since ROS can also harm plant tissue they require close regulation. Takahashi and his team—from RIKEN and three Japanese universities—found that the regulator is MPK8.

In addition to the initial response, the injury stimulates the release of calcium ions and starts a cascade of phosphorylation or phosphate-adding compounds. The compounds involved are called mitogen-activated protein kinases (MAPKs). MPK8 is one of the MAPKs of the model plant Arabidopsis.

Takahashi and his colleagues used Arabidopsis plants to investigate how both signaling and the levels of ROS are regulated after physical injury. Using plants into which they had introduced additional copies of the MPK8 gene, the researchers showed that MPK8 was activated under stress, particularly from physical wounding. MPK8 was strongly activated by MKK3, another MAP kinase from higher up the cascade. But it was also activated by calcium ions, specifically when they were bound to proteins called calmodulins. In addition, the researchers determined that the production of MPK8 was associated with regulation of ROS, lowering its accumulation.

A region of MPK8 known as TDY is known to interact or be phosphorylated with both MKK3 and calcium-bound calmodulins. By inhibiting each of these compounds in turn, the researchers showed that full activation of MPK8 demanded activating both of them at once, bringing the signaling pathways together. Finally, by examining the expression of genes, they found that MPK8 regulates the production of ROS by repressing the gene that stimulates their production (Fig 1).

“We think our findings might eventually lead to designing a drug treatment for malaria infection,” says Takahashi, “because the Plasmodium parasite involved uses the same kind of MAPKs.”

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science Center

Journal information

[1] Takahashi, F., Mizoguchi, T., Yoshida, R., Ichimura, K. & Shinozaki, K. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Molecular Cell 41, 649–660(2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Arabidopsis plant Arabidopsis thaliana MAP MAPKs MPK8 RIKEN calcium ions signaling pathway

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>