Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlike us, Honey bees can make ‘quick switch’ in their biological clocks without problems

13.10.2010
Unlike humans, honey bees, when thrown into highly time-altered new societal roles, are able to alter their biological rhythms with alacrity, enabling them to make a successful “quick switch” in their daily routines, according to research carried out at the Hebrew University of Jerusalem.

With people, on the other hand, disturbances to their biological clocks by drastic changes in their daily schedules are known to cause problems -- for example for shift workers and for new parents of crying, fitful babies.

Disturbance of the biological clock – the circadian rhythm – can also contribute to mood disorders. On a less severe scale, international air travelers all know of the “jet lag” disturbance to their biological clocks caused by traveling across several time zones.

Bees, however, have now been shown to be highly resilient to such change. When removed from their usual roles in the hive, the bees were seen to quickly and drastically change their biological rhythms, according to a study by Prof. Guy Bloch of the Department of Ecology, Evolution and Behavior of the Alexander Silberman Institute of Life Sciences at the Hebrew University. His research is published in the current edition of The Journal of Neu roscience.

The changes, he found, were evident in both the bees’ behavior and in the "clock genes" that drive their internal biological clocks. These findings indicate that social environment had a significant effect on the physiology of their behavior.

Circadian rhythm, the body’s “internal clock,” regulates daily functions. A few “clock genes” control many actions, including the time of sleeping, eating and drinking, temperature regulation and hormone fluctuations. However, exactly how that clock is affected by -- and affects -- social interactions with other animals is unknown.

Bloch and his colleagues Dr. Yair Shemesh, Ada Eban-Rothschild, and Mira Cohen chose to study bees in part because of their complex social environment. One role in bee society is the “nurse” -- bees that are busy round the clock caring for larvae. This activity pattern is different from other bees and animals, whose levels rise and fall throughout the day.

Bloch and his team thought that changing the nurse bees’ social environment might alter their activity levels, so they separated them from their larvae. The researchers found that the bees’ cellular rhythms and behavior completely changed, matching a more typical circadian cycle. The opposite also was true, when other bees were transferred into a nursing function.

“Our findings show that circadian rhythms of honey bees are altered by signals from the brood that are transferred by close or direct contact,” Bloch said. “This flexibility in the bees’ clock is striking, given that humans and most other animals studied cannot sustain long periods of around-the-clock activity without deterioration in performance and an increase in disease.”

Because bees and mammals’ circadian clocks are similarly organized, the question arises as to whether the clocks of other animals also strongly depend on their social environments. The next step is to find just how social exchanges influence gene expressions. Further research into this question may have implications for humans who suffer from disturbances in their behavioral, sleeping and waking cycles.

The research was supported by the Israeli Science Foundation, the Israel-U.S. Binational Science Foundation, and the German Israel Foundation.

For further information:

Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: Science TV biological clock social interaction

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>