University of Toronto chemists make breakthrough in nanoscience research

“Currently, no model exists describing the organization of nanoparticles,” says Kumacheva. “Our work paves the way for the prediction of the properties of nanoparticle ensembles and for the development of new design rules for such structures.”

The focus of nanoscience is gradually shifting from the synthesis of individual nanoparticles to their organization in larger structures. In order to use nanoparticle ensembles in functional devices such as memory storage devices or optical waveguides, it is important to achieve control of their structure.

According to the researchers' observations, the self-organization of nanoparticles is an efficient strategy for producing nanostructures with complex, hierarchical architectures. “The past decade has witnessed great progress in nanoscience – particularly nanoparticle self-assembly – yet the quantitative prediction of the architecture of nanoparticle ensembles and of the kinetics of their formation remains a challenge,” she continues.

“We report on the remarkable similarity between the self-assembly of metal nanoparticles and chemical reactions leading to the formation of polymer molecules. The nanoparticles act as multifunctional single units, which form reversible, noncovalent bonds at specific bond angles and organize themselves into a highly ordered polymer.”

“We developed a new approach that enables a quantitative prediction of the architecture of linear, branched, and cyclic self-assembled nanostructures, their aggregation numbers and size distribution, and the formation of structural isomers.”

Kumacheva was joined in the research by postdoctoral fellows Kun Liu, Nana Zhao and Wei Li, and former doctoral student Zhihong Nie, along with Professor Michael Rubinstein of the University of North Carolina. As polymer chemists, the team took an unconventional look at nanoparticle organization.

“We treated them as molecules, not particles, which in a process resembling a polymerization reaction, organize themselves into polymer-like assemblies,” says Kumacheva. “Using this analogy, we used the theory of polymerization and predicted the architecture of the so-called 'molecules' and also found other, unexpected features that can find interesting applications.”

The findings were published in a report titled “Step-Growth Polymerization of Inorganic Nanoparticles” in the July 9 issue of Science. The research was funded with support from an NSERC Discovery Grant from the Natural Sciences and Engineering Research Council of Canada and Canada Research Chair funding.

Media Contact

Sean Bettam EurekAlert!

More Information:

http://www.utoronto.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors