Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Oregon lab creates new class of hydrogen sulfide donor molecules

03.01.2017

Back-to-back studies unveil the design and ability to program a molecule that could eventually be harnessed to reduce cellular damage common in many diseases

Molecules with the potential to deliver healing power to stressed cells - such as those involved in heart attacks - have been created by University of Oregon researchers.


Illustration shows the delivery route of hydrogen sulfide to damaged cells based on two projects completed in the University of Oregon lab of Michael Pluth.

Credit: Illustration by Michael Pluth

The research - done at a cellular level in the lab and far from medical reality - involves the design of organic molecules that break down to release hydrogen sulfide when triggered by specific conditions such as increased oxidative stress.

Oxidative stress damages cells and is tied especially to heart disease and cancer, as well as Alzheimer's and Parkinson's disease.

Separate portions of the research were detailed in proof-of-concept papers in the Journal of the American Chemical Society in June and in November in Angewandte Chemie, an international journal.

"We have discovered that small organic molecules can be engineered to release a molecule called carbonyl sulfide, which is the most prevalent sulfur-containing molecule in the atmosphere, but more importantly converts rapidly to hydrogen sulfide under biological conditions," said Michael Pluth, a professor of chemistry and co-author on both papers. "We developed and demonstrated a new mechanism to release small molecules that provide therapeutic hydrogen sulfide."

Hydrogen sulfide, a colorless gas, has long been known for its dangerous toxicity -- and its telltale smell of rotten eggs -- in the environment, but it also is produced in mammals, including humans, with important roles in molecular signaling and cardiac health.

Initially, Pluth's doctoral student Andrea Steiger, lead author of the ACS paper, used benzyl thiocarbamates to design responsive organic molecules that release carbonyl sulfide. For the second paper, postdoctoral researcher Yu Zhao, also in Pluth's lab, adapted the molecule so it remains nontoxic and stable until cellular conditions trigger it to release the carbonyl sulfide, which is converted to hydrogen sulfide by carbonic anhydrase enzymes in the body.

Finding a way to generate restorative hydrogen sulfide in the body has been a goal of many research labs around the world in the last two decades. Researchers in Pluth's lab in 2013 developed a probe that detects the gas in biological samples, providing a framework to test potential donor molecules, either synthetically produced or isolated from natural products.

"To do that we need to develop new chemistry," Pluth said. "We are synthetic chemists. We make molecules with the goal of developing new research tools or therapeutic tools. As for treating a disease, we aren't there yet, but these cell-based studies suggest that those types of protective effects might be possible."

During a heart attack or loss of blood flow, for example, increased levels of reactive oxygen species like hydrogen peroxide emerge, Pluth said. The recently developed donor molecules are programmed to react to the overexpression of reactive oxygen species. Current hydrogen sulfide donors are generally slow-release molecules that donate hydrogen sulfide passively.

Taken together, the two studies show that it's possible to build molecular scaffolds to release carbonyl sulfide and then hydrogen sulfide by creating a trigger in the molecule to start the delivery process, Zhao said. "With this, you might be able to pick molecular events that are associated with conditions in which hydrogen sulfide might be beneficial, and then develop donor molecules able to deliver hydrogen sulfide under those conditions," he said.

"The novelty for us was being able to use carbonyl sulfide as a source of hydrogen sulfide donation," Steiger said of the findings of the project she led. "This was a first. It opened up a whole new class of donor molecules."

One of the goals of developing these small hydrogen sulfide-releasing molecules is the potential for long-term applications in therapeutics, Pluth said. "Having researchers nearby who are focused on translating basic science discoveries into market applications would facilitate further expansion of this work," he said.

Advancing such basic research is the goal of the UO's Phil and Penny Knight Campus for Accelerating Scientific Impact. The $1 billion initiative to fast-track scientific discoveries into innovations that improve quality of life for people in Oregon, the nation and the world began with the announcement in October of a $500 million gift from the Knights.

###

Co-authors with Steiger and Pluth on the ACS paper were Sibile Pardue and Christopher G. Kevil of the Louisiana State University Health Science Center in Shreveport. Zhao and Pluth co-authored the paper in Angewandte Chemie.

The National Science Foundation, National Institutes of Health, Sloan Foundation and Dreyfus Foundation supported the two projects.

Source: Michael Pluth, associate professor, Department of Chemistry and Biochemistry, 541-346-7477, pluth@uoregon.edu; Yu Zhao, postdoctoral researcher, yzhao2@uoregon.edu; and Andrea Steiger, asteiger@uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

Steiger paper: http://dx.doi.org/10.1021/jacs.6b03780

Zhao paper: http://dx.doi.org/10.1002/anie.201608052

Michael Pluth: http://pages.uoregon.edu/pluth/pluth.html

Department of Chemistry and Biochemistry: http://chemistry.uoregon.edu

About the tool announced in 2013: http://uonews.uoregon.edu/archive/news-release/2013/6/oregon-chemists-moving-forward-tool-detect-hydrogen-sulfide

Phil and Penny Knight Campus for Accelerating Scientific Impact: http://uoregon.edu/accelerate

Media Contact

Jim Barlow
jebarlow@uoregon.edu
541-346-3481

 @UOregonNews

http://around.uoregon.edu 

 

Jim Barlow | EurekAlert!

Further reports about: Angewandte Chemie Biochemistry carbonyl sulfide oxygen species sulfide

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>