Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Konstanz researchers create uniform-shape polymer nanocrystals

13.06.2019

Researchers from the University of Konstanz’s Collaborative Research Centre (CRC) 1214 “Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures” successfully generate uniform-shape nanocrystals using direct polymerization

A team of researchers from the University of Konstanz’s CRC 1214 “Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures”, which has been funded by the German Research Foundation (DFG) since 2016, has demonstrated a new aqueous polymerization procedure for generating polymer nanoparticles with a single chain and uniform shape, which, as another difference to previous methods, involves high particle concentrations.


Concept to obtain uniform size and shape particles by controlled polymerization on a molecular as well as particle level. An effective nucleation (N) ensures that particles contain only one active site, and start to grow virtually at the same time. Due to the living character of polymerization, all particles continue to grow for the entire duration of the experiment, to yield particles each composed of a chain of identical length. As the growing chains are immediately deposited on the growing single-crystal particle during this process, particle shape evolves uniformly over time during polymerization

Copyright: Stefan Mecking and Manuel Schnitte

A corresponding paper entitled “Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization” is due for open access online publication in Nature Communications on 13.06.2019.

Nanoparticles are the building blocks for envisioned nanoparticle-based materials with yet unachieved optical, electronic and mechanical properties. To build nanomaterials, nanoparticles with uniform shapes and sizes are required.

While inorganic metal or metal oxide nanoparticles suitable for assembly can be generated in a variety of shapes, it has been very difficult until now to manufacture polymer nanoparticles in shapes other than spheres, as Stefan Mecking, Professor of Chemical Materials Science at the University of Konstanz’s Department of Chemistry and Vice Speaker of CRC 1214, points out:

“In previous approaches, single-chain particles were prepared by post-polymerization collapse or assembled from solutions of separately synthesized chains. What we have managed to do is to demonstrate direct polymerization to single-chain uniform-shape monodisperse nanocrystals for polyethylene, which is the largest and most important synthetic polymer material”.

One major challenge associated with this approach is to achieve living chain and particle growth that can be sustained for several hours and up to very high molecular weights, ideally yielding single-chain nanocrystals of ultra-high molecular weight polyethylene. To achieve this, the researchers developed advanced catalysts.

“We then conducted a series of pressure reactor tests to identify ideal conditions for maintaining catalytic activity over longer periods of time and to gain insights into the chain and particle growth process”, explains Mecking. “In addition to the novel catalysts, control of the colloidal state of the reaction mixture is another key element in obtaining the desired aqueous particle dispersions”.

In contrast to many post-polymerization procedures, the aqueous polymerization procedure elaborated by Stefan Mecking and his team yields high particle number densities, which are comparable to commercial polymer dispersions used for coatings, paints and other applications.

Using transmission electron microscopy (TEM), the researchers were able to confirm that the particles thus generated are composed of a single chain, display a uniform shape and size distribution and do not aggregate. “While our assemblies may not fully match the extensively optimized assemblies of inorganic nanoparticles, they seem to be very promising”, concludes Mecking.

“In time, our insights into the creation of anisotropic polymer nanocrystals using aqueous catalytic polymerization may enable us to create polymer materials based on nanoparticle assembly”.

Facts:
- Original publication: Manuel Schnitte, Anne Staiger, Larissa A. Casper, Stefan Mecking. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nature Communications, 13.06.2019. DOI: https://doi.org/10.1038/s41467-019-10692-1 (DOI will become active after 10:00 BST on 13.06.2019). Licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
- Team of University of Konstanz researchers led by Professor Stefan Mecking from the Department of Chemistry successfully demonstrates a new aqueous catalytic polymerization procedure for generating anisotropic nanocrystals with uniform shape and size
- Solution to the unresolved problem of uniform particle shape and size in the preparation of polymer nanoparticles
- Tests confirm the nanocrystals’ potential for assembly
- Part of the research carried out by the Konstanz-based Collaborative Research Centre 1214 “Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures”, funded by the German Research Foundation (DFG) since 2016

Note to editors:
An image is available for download here: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/university_of_ko...

Caption: Concept to obtain uniform size and shape particles by controlled polymerization on a molecular as well as particle level. An effective nucleation (N) ensures that particles contain only one active site, and start to grow virtually at the same time. Due to the living character of polymerization, all particles continue to grow for the entire duration of the experiment, to yield particles each composed of a chain of identical length. As the growing chains are immediately deposited on the growing single-crystal particle during this process, particle shape evolves uniformly over time during polymerization
Copyright: Stefan Mecking and Manuel Schnitte

Contact:
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
Email: kum@uni-konstanz.de

- uni.kn/en

Originalpublikation:

Manuel Schnitte, Anne Staiger, Larissa A. Casper, Stefan Mecking. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nature Communications, 13.06.2019. DOI: https://doi.org/10.1038/s41467-019-10692-1 (DOI will become active after 10:00 BST on 13.06.2019). Licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Julia Wandt | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The impact of molecular rotation on a peculiar isotope effect on water hydrogen bonds
03.12.2019 | National Institutes of Natural Sciences

nachricht New treatment for brain tumors uses electrospun fiber
03.12.2019 | University of Cincinnati

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The impact of molecular rotation on a peculiar isotope effect on water hydrogen bonds

03.12.2019 | Life Sciences

SLAC scientists invent a way to see attosecond electron motions with an X-ray laser

03.12.2019 | Materials Sciences

Focused ultrasound may open door to Alzheimer's treatment

03.12.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>