Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Innsbruck develops novel corona test method

01.04.2020

Michael Traugott and the spin-off company Sinsoma GmbH, together with the Departments of Zoology and Microbiology at the University of Innsbruck, are developing a new PCR system for the detection of the SARS-CoV-2 virus. This new PCR method works with different analytical materials that are easier to obtain and allow high-throughput testing. First tests were successful.

As requested by the Austrian Federal Government and the WHO, a significant increase in the capacity for coronavirus testing is essential to combat the new coronavirus.


University of Innsbruck develops novel corona test method

Sinsoma GmbH

The University of Innsbruck is now responding to this by immediately developing and evaluating a new high-throughput method for the genetic analysis of patient samples at its Faculty of Biology.

At the Departments of Zoology and Microbiology at the University of Innsbruck, several successful feasibility tests for a high-throughput CE-PCR for the detection of the SARS-CoV-2 virus have been carried out in recent days in cooperation with Sinsoma GmbH, a spin-off company of the University of Innsbruck.

Finding the needle in the haystack

This approach uses the coupling of highly sensitive endpoint PCR and capillary electrophoresis (CE) in contrast to conventional real-time PCR protocols to detect genetic traces of the virus in samples. This is achieved by using specific, very short DNA sequences – so-called primers – which dock to the virus' RNA.

This makes it possible to find the needle in the haystack. Just a few corona virus RNA molecules are enough to be discovered with the help of the procedure of the Innsbruck team. What is new about the Innsbruck approach is that it enables high-throughput CE-PCR analysis.

Not dependent on test kits used so far

"With this novel approach, we use different reagents than the conventional test methods," explains Michael Traugott, scientist at the University of Innsbruck and co-founder of Sinsoma GmbH. "As a result, we are not affected by material shortages, which are already occurring due to the great global demand for conventional tests."

The Innsbruck laboratory can carry out up to 1,000 tests per day if the evaluation by the authorities is successful and can then gradually expand this capacity.

"With this, we want to offer an alternative method that ensures the detection of the SARS-CoV-2 virus in high throughput even if the supply situation becomes more difficult," says Rector Tilmann Märk.

"With this new method, we at the University of Innsbruck want to make a contribution to effectively support the massive expansion of the test capacity for combating the coronavirus."

Novel application of an established analysis method

The spin-off company Sinsoma GmbH is a specialist in DNA/RNA trace analysis. Highly sensitive methods enable the company to identify and quantify individual species as well as entire species communities by detecting DNA and RNA from different sample types. The spectrum ranges from microorganisms and plants to fish and mammals. The University of Innsbruck is a shareholder of Sinsoma GmbH via the university holding company.

Video: https://www.youtube.com/watch?v=fKtUrN4_cwI

Wissenschaftliche Ansprechpartner:

assoz. Prof. Mag. Dr. Michael Traugott
University of Innsbruck / Sinsoma GmbH
phone: +43 512 507 51670
email: michael.traugott@uibk.ac.at
web: https://sinsoma.com/

Weitere Informationen:

https://sinsoma.com/ - Sinsoma GmbH
https://www.uibk.ac.at/ - University of Innsbruck

Dr. Christian Flatz | Universität Innsbruck

More articles from Life Sciences:

nachricht When predictions of theoretical chemists become reality
22.05.2020 | Technische Universität Dresden

nachricht From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there
20.05.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>