University of Montreal researchers discover how drug prevents aging and cancer progression

In the March 23 online edition of the prestigious journal Aging Cell, scientists from the University of Montreal explain how they found that the antidiabetic drug metformin reduces the production of inflammatory cytokines that normally activate the immune system, but if overproduced can lead to pathological inflammation, a condition that both damages tissues in aging and favors tumor growth.

“Cells normally secrete these inflammatory cytokines when they need to mount an immune response to infection, but chronic production of these same cytokines can also cause cells to age. Such chronic inflammation can be induced, for example by smoking” and old cells are particular proficient at making and releasing cytokines says Dr. Gerardo Ferbeyre, senior author and a University of Montreal biochemistry professor. He adds that, “We were surprised by our finding that metformin could prevent the production of inflammatory cytokines by old cells “.

In collaboration with Michael Pollack of the Segal Cancer Centre of the Jewish General Hospital, McGill University, Dr. Ferbeyre and his team discovered that metformin prevented the synthesis of cytokines directly at the level of the regulation of their genes. “The genes that code for cytokines are normal, but a protein that normally triggers their activation called NF-B can't reach them in the cell nucleus in metformin treated cells”, Dr. Ferbeyre explained. “We also found that metformin does not exert its effects through a pathway commonly thought to mediate its antidiabetic effects”, he added.

“We have suspected that metformin acts in different ways on different pathways to cause effects on aging and cancer. Our studies now point to one mechanism”, noted lead authors of the study Olga Moiseeva and Xavier Deschênes-Simard. Dr. Ferbeyre emphasized that, “this is an important finding with implications for our understanding on how the normal organism defends itself from the threat of cancer and how a very common and safe drug may aid in treatment of some cancers and perhaps slow down the aging process. He adds, “It remains that determining the specific targets of metformin would give us an even better opportunity of profit from its beneficial effects. That's what we want to figure out next”.

Notes:

The University of Montreal is known officially as Université de Montréal. The research involved in the study “Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-B activation” was financed by Prostate Cancer Canada and the Canadian Institutes of Health Research (MOP-82887).

To read the Aging Cell article onlinelibrary.wiley.com/doi/10.1111/acel.12075/

About the University of Montreal: http://www.umontreal.ca/english

About the Department of Biochemistry http://www.bcm.umontreal.ca

About Dr. Ferbeyre's research: http://www.mapageweb.umontreal.ca/ferbeyre/index-en.htm

Media Contact

William Raillant-Clark EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors