Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Montreal researchers discover how drug prevents aging and cancer progression

27.03.2013
University of Montreal researchers have discovered a novel molecular mechanism that can potentially slows the aging process and may prevent the progression of some cancers.

In the March 23 online edition of the prestigious journal Aging Cell, scientists from the University of Montreal explain how they found that the antidiabetic drug metformin reduces the production of inflammatory cytokines that normally activate the immune system, but if overproduced can lead to pathological inflammation, a condition that both damages tissues in aging and favors tumor growth.

"Cells normally secrete these inflammatory cytokines when they need to mount an immune response to infection, but chronic production of these same cytokines can also cause cells to age. Such chronic inflammation can be induced, for example by smoking" and old cells are particular proficient at making and releasing cytokines says Dr. Gerardo Ferbeyre, senior author and a University of Montreal biochemistry professor. He adds that, "We were surprised by our finding that metformin could prevent the production of inflammatory cytokines by old cells ".

In collaboration with Michael Pollack of the Segal Cancer Centre of the Jewish General Hospital, McGill University, Dr. Ferbeyre and his team discovered that metformin prevented the synthesis of cytokines directly at the level of the regulation of their genes. "The genes that code for cytokines are normal, but a protein that normally triggers their activation called NF-B can't reach them in the cell nucleus in metformin treated cells", Dr. Ferbeyre explained. "We also found that metformin does not exert its effects through a pathway commonly thought to mediate its antidiabetic effects", he added.

"We have suspected that metformin acts in different ways on different pathways to cause effects on aging and cancer. Our studies now point to one mechanism", noted lead authors of the study Olga Moiseeva and Xavier Deschênes-Simard. Dr. Ferbeyre emphasized that, "this is an important finding with implications for our understanding on how the normal organism defends itself from the threat of cancer and how a very common and safe drug may aid in treatment of some cancers and perhaps slow down the aging process. He adds, "It remains that determining the specific targets of metformin would give us an even better opportunity of profit from its beneficial effects. That's what we want to figure out next".

Notes:

The University of Montreal is known officially as Université de Montréal. The research involved in the study "Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-B activation" was financed by Prostate Cancer Canada and the Canadian Institutes of Health Research (MOP-82887).

To read the Aging Cell article onlinelibrary.wiley.com/doi/10.1111/acel.12075/

About the University of Montreal: http://www.umontreal.ca/english

About the Department of Biochemistry http://www.bcm.umontreal.ca

About Dr. Ferbeyre's research: http://www.mapageweb.umontreal.ca/ferbeyre/index-en.htm

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca
http://www.umontreal.ca/english
http://www.bcm.umontreal.ca

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>