Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of the Basque Country researchers decode transcriptome for grey mullet

29.01.2010
The Cell Biology in Environmental Toxicology research team at the Department of Zoology and Animal Cell Biology at the University of the Basque Country (UPV/EHU) has decoded the transcriptome for the grey mullet. The director of the research project was Mr Ibon Cancio.

On more than one occasion we will have heard that the genome is the library where all the information of each organism is stored. This information is organised in various genes, where the information to synthesise the proteins that carry out most cell functions is stored.

The genome also has another type of genetic material that is not in the genes. This is the transcriptome - the part of the genome that is transcribed or is read. In most pluricellular beings it is usually more or less 1.5% of the genome.

This UPV/EHU research team has just decoded the transcriptome of the grey mullet. For a number of years now the researchers have been measuring the quality of river and sea water. For this it was necessary to have an animal capable of living in contaminated areas, one of which is the grey mullet. The aim was to measure the response that this animal has to contamination, in order to better know the quality of surrounding water. Besides, the grey mullet is very abundant in the rivers and sea of the Basque Country. Thus, according to Mr Cancio, it is the appropriate animal model, being very abundant and capable of surviving in contaminated areas.

More than half of the genes

The research was initiated in the Basque fishing port of Ondarroa, gathering a number of grey mullets: males, females, young fish, etc. Organs such as the liver, gills, gonads and brain were extirpated from each and the messenger RNA extracted. These samples of messenger RNA were suitably mixed to ensure that most of the transcriptome of the species would be found in the overall sample. Subsequently, the messenger RNA was converted to complementary DNA.

The samples of complementary DNA were sent to the sequencing department at the University of Newcastle in Britain. This university has a new sequencing system whereby, with just one analysis lasting seven and a half hours, 400,000 cDNA, can be sequenced, each with a length of 250 nucleotides. This was how the UPV/EHU research team obtained all the information about the transcriptome of the grey mullet; 126 million nucleotides, in concrete.

The most laborious task came later - making sense of all the information obtained, i.e. identifying the genes for each sequence, given that the function of the sequence can be found out from the gene. To this end, help from the General Research Services (SGIker) of the UPV/EHU was required.

Following this procedure, 18,332 genes were obtained. The aim was not to identify all the genes of the grey mullet, but more than half of them. With all this information a DNA microchip was developed in order to investigate the response of the mentioned genes to contamination.

For the upcoming year the challenge for the UPV/EHU research team to decode the transcriptome of the slug in order to generate a health profile of the soil.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Basque DNA RNA UPV/EHU cell death messenger RNA synthetic biology

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>