Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The unique taste of ‘smoky’ tomatoes is caused by one missing enzyme

08.10.2013
The absence or presence of one specific enzyme causes tomatoes to be described as ‘smoky’ or not by taste experts.

This is the result of research by Wageningen UR, which studied the taste of 94 tomato varieties using expert taste panels. The tomatoes were also evaluated for their metabolite content, such as aroma volatiles, and for their DNA composition.

When a tomato plant is able to produce the identified enzyme, it converts precursors of the ‘smoky’ volatiles into others which are odourless and tasteless. As smoky tomatoes cannot produce this enzyme, the precursors of smoky volatiles are not converted. In these tomatoes, smoky volatiles can be released upon biting and chewing, giving rise to a smoky aroma.

This new knowledge can help tomato breeding companies to select more specifically for flavour characteristics. The research was performed within the framework of the Dutch Genomics Initiative, Centre for Biosystems Genomics (CBSG).

Tomatoes come in many varieties and sizes. Most supermarkets sell around ten different sorts, many of which are especially popular for their flavour. Because preferences differ, some people choose one variety, while others choose another.

Wageningen UR supports Dutch tomato-breeding companies in developing tomatoes with a good, either new or existing, flavour. Some of the Wageningen scientists study the flavour of tomatoes that are already ‘in the pipeline’ at the breeding companies. This allows these companies to market new varieties with confidence. Other Wageningen scientists look at how and why the flavours of the tomatoes vary.

When taste panels describe the flavour of tomatoes, they use words like ‘sweet’, ‘sour’, ‘mealy’ and ‘tomato aroma’. Whether something tastes good or bad is a matter of preference. But taste experts are in fact able to indicate to what extent tomatoes are ‘sweet’ or ‘sour’. One of the flavour characteristics the experts use is ‘smoky’; a taste that is similar to the typical flavour of smoked cheese, meat or fish. Roughly half of the tomatoes studied were classified as ‘smoky’ by the taste experts. The scientists at Wageningen UR discovered the mechanisms underlying this ‘smoky’ flavour.

The scientists compared the results of the taste experts to their analysis of the components in the tomatoes and discovered that all ‘smoky’ tomatoes contain three types of aromatic volatiles. These volatiles are stored in the fruit after coupling to a double sugar molecule, as disaccharides. While the three resulting components are tasteless by themselves, when a tomato is cut or eaten the stored volatile-disaccharides are quickly cleaved and the aromatic volatiles are released into the air. These ‘breakdown products’ give the tomatoes a ‘smoky’ flavour.

In some tomatoes the three disaccharides are enzymatically coupled to a third sugar molecule and stored as trisaccharides. These trisaccharides cannot be broken down to smoky aroma volatiles when tomatoes are cut or eaten. Therefore these tomatoes do not have a smoky flavour. Thanks to a combination of DNA analyses, gene expression analyses and metabolite analyses, the Wageningen scientists found the gene coding for the enzyme that converts ‘smoky’ disaccharides into ‘non-smoky’ trisaccharides.. In smoky tomatoes the identified gene is ‘cripple’ and no longer codes for a functional enzyme. As a result, the smoky precursors cannot be converted into the non-tasting trisacharides.

The Wageningen scientists hope that the new knowledge on the background of the smoky flavour of tomatoes will help breeding companies take a more targeted approach towards specific flavours.

The results have been published in the scientific magazine Plant cell.

Note for the editor
More information: Erik Toussaint, press official, T: +31 651 56 59 49
Images, free of copyrights:
- https://picasaweb.google.com/115915961286327465946/Tomatenproeven#
- Sensory trial of a tomato by a member of a tasting panel
- Graph presenting aromatic volatiles of smoky en non-smoky tomatoes
- Graph showing the research path: from 23.000 genes to the gene coding for the enzyme

Publication: http://www.plantcell.org/content/25/8/3067.abstract.html?etoc

Erik Toussaint | Wageningen University
Further information:
http://www.wageningenur.nl/

Further reports about: DNA Dutch landscape Genomics Wageningen sugar molecule

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>