Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique fingerprint: What makes nerve cells unmistakable?

02.09.2019

Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain. This allows organisms to build a highly complex neuronal network with only a limited number of genes. The study describing a detailed map of neuronal splicing conducted by a research team at the Biozentrum, University of Basel, has now been published in "Nature Neuroscience".

Our brain consists of hundreds, if not thousands, of different types of nerve cells that control our brain functions due to their individual characteristics. But how do the different cell types manage to develop their diverse traits?


Protein variants shape wiring of nerve cells in the brain.

Biozentrum, University of Basel

In a genome-wide analysis, the team led by Prof. Peter Scheiffele at the Biozentrum, University of Basel, has now discovered that alternative splicing leads to a broad range of variants of individual proteins, which ultimately allows to distinguish types of nerve cells.

Alternative splicing determines cell types

Alternative splicing can generate multiple different protein variants from a single gene. In the mouse model, Scheiffele's team investigated splice variants in a panel of neuronal cell types. “We have been able to identify hundreds of splice variants that enable us to differentiate between different types of neurons,” says Scheiffele. "There are unique repertoires of variants in each nerve cell type.”

These repertoires of splice variants significantly shape the identity and function of nerve cells. “Although all neuronal cell types contain the same set of genes, even closely-related cell types produce different splice variants," explains Scheiffele.

In particular, proteins located at the neuronal contact points – the synapses, which mediate the transmission and processing of information – are extremely diverse. Thus, the splicing process also controls the function of the neuronal circuits in the brain.

Data platform for scientists

The generation and analysis of the extensive data sets is part of the EU-funded project “SPLICECODE”. In collaboration with the "Center for Scientific Computing" (sciCORE), a user-friendly website has been set up which allows scientists worldwide to investigate the role of individual splice variants in brain function.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Peter Scheiffele, University of Basel, Biozentrum, Tel. +41 61 207 21 94, Email: peter.scheiffele@unibas.ch

Heike Sacher, University of Basel, Biozentrum, Communications, Tel. +41 61 207 14 49, Email: heike.sacher@unibas.ch

Originalpublikation:

Elisabetta Furlanis, Lisa Traunmüller, Geoffrey Fucile, Peter Scheiffele.
Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal cell class-specific alternative splicing programs.
Nature Neuroscience (2019), doi: 10.1038/s41593-019-0465-5

Weitere Informationen:

https://www.nature.com/articles/s41593-019-0465-5

Iris Mickein | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht New tool improves beekeepers' overwintering odds and bottom line
19.09.2019 | US Department of Agriculture - Agricultural Research Service

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

UMD-led study captures six galaxies undergoing sudden, dramatic transitions

19.09.2019 | Physics and Astronomy

Study points to new drug target in fight against cancer

19.09.2019 | Health and Medicine

New tool improves beekeepers' overwintering odds and bottom line

19.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>