Researchers at the University of New Hampshire have created an easy-to-make, low-cost injectable hydrogel that could help wounds heal faster, especially for patients with compromised health issues.
Wound healing can be complex and challenging, especially when a patient has other health obstacles that seriously impede the process.
Often injectable hydrogels are applied to irregular shaped wounds, like diabetic ulcers, to help form a temporary matrix, or structure, to keep the wound stable while cells rejuvenate.
The caveat is that current hydrogels are not porous enough and do not allow neighboring cells to pass through toward the wound to help it mend.
"While valuable for helping patients, current hydrogels have limited clinical efficacy," said Kyung Jae Jeong, assistant professor of chemical engineering at UNH. "We discovered a simple solution to make the hydrogels more porous and therefore help to speed up the healing."
In the study, recently published in the journal of ACS Applied Bio Materials, the researchers outline how they made a macroporous hydrogel by combining readily available gelatin microgels - hydrogels that are a few hundred microns in diameter - with an inexpensive enzyme called microbial transglutaminase (mTG).
Gelatin was used because it is a natural protein derived from collagen, a protein found in connective tissue in the body such as skin. Assembling these tiny microgels with mTG helped create a hydrogel with large enough pores for the neighboring cells to move into the wound for repair.
In addition, this new injectable formulation allows for the slow release of protein drugs to aid wound healing, such as platelet-derived growth factor (PDGF). The researchers compared conventional nonporous hydrogels with the new macroporous hydrogels, and found a notable increase in the migration of tissue cells inside the hydrogel, which is the hallmark of wound healing.
Along with diabetic ulcers, the macroporous hydrogel could help with other forms of healing on the skin, cornea, internal organs during surgery and even has military implications.
This work was supported in part by the NIH COBRE Center of Integrated Biomedical and Bioengineering Research through an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences.
The University of New Hampshire is a flagship research university that inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of study. UNH's research portfolio includes partnerships with NASA, NOAA, NSF and NIH, receiving more than $100 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.
PHOTOS AVAILABLE FOR DOWNLOAD
https:/
This is a 3D confocal microscope image of human skin cells growing around and within the porous hydrogel.
Credit: UNH
https:/
Second image of 3D confocal image of human skin cells growing around and within the porous hydrogel with different staining.
Credit: UNH
https:/
Electron microscope image of the porous hydrogel.
Credit: UNH
Robbin Ray | EurekAlert!
Further information:
https://www.unh.edu/unhtoday/news/release/2018/11/20/unh-researchers-create-more-effective-hydrogel-healing-wounds
http://dx.doi.org/10.1021/acsabm.8b00380
Further reports about: > diabetic ulcers > human skin > human skin cells > hydrogel > skin > skin cells > wound healing
Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society
Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine
University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making
In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...
With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction
The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...
Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.
Fibroblasts kit - ready to heal wounds
Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.
In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
Solving the mystery of carbon on ocean floor
06.12.2019 | Earth Sciences
Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | Life Sciences
A platform for stable quantum computing, a playground for exotic physics
06.12.2019 | Information Technology