Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the APJ Receptor Binding Site

01.06.2010
Exploring the RPRL Motif of Apelin-13 through Molecular Simulation and Biological Evaluation of Cyclic Peptide Analogues

Apelin is a recently discovered peptide that binds to the apelin (or APJ) G-protein-coupled receptor. Apelin-13 (NH2-QRPRLSHKGPMPF-COOH), one of several cleavage products of the proprotein form of the apelin gene product, is a vasoactive peptide and is one of the most potent endogenous inotropic agents known so far.

After having conducted extensive replica-exchange molecular dynamics and competition binding experiments, N. J. Maximilian Macaluso and Robert C. Glen at the University of Cambridge report the design and evaluation of head-to-tail cyclized analogues of the apelin-13 peptide in the journal ChemMedChem.

"The receptor-bound conformation of apelin, if known, would greatly facilitate the rational design of novel agonists and antagonists at APJ," says Glen. "Interest in apelin as a drug target has greatly increased with recognition of its role in cardiovascular disease, metabolic syndrome, and as a co-receptor for HIV infection."

This combined in silico and in vivo approach revealed that peptides promoting a â turn at the RPRL motif toward the N terminus of apelin-13 show affinity for the APJ receptor, whereas those without this RPRL turn exhibit almost no binding at APJ. This is a critical step in understanding the APJ receptor binding site, which has not yet been identified. The study lays the foundation for not only further development of truncated cyclic peptide analogues of apelin-13, but also the development of non-peptide mimetics.

Author: Robert C. Glen, University of Cambridge (UK), http://www.ch.cam.ac.uk/staff/rcg.html

Title: Exploring the RPRL Motif of Apelin-13 through Molecular Simulation and Biological Evaluation of Cyclic Peptide Analogues

ChemMedChem 2010, 5, No. 8, Permalink to the article: http://dx.doi.org/10.1002/cmdc.201000061

Robert C. Glen | Wiley-VCH
Further information:
http://www.ch.cam.ac.uk/staff/rcg.html
http://www.chemmedchem.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>