Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding anxiety - Neural circuit mechanisms of emotion identified

11.06.2018

According to a report by the World Health Organization, close to 1 in 10 people in the world are affected by anxiety and/or depression. Alarmingly, the amount has nearly doubled, from 416 million to 615 million, between 1990 and 2013. Since adequate treatments are still lacking for many patients, the scientists at the Max Planck Institute of Psychiatry hope their research will inform the development of new, more effective treatments.

In a previous study, published in Science in 2011, Jan Deussing’s group revealed for the first time that corticotropin releasing hormone (CRH) signaling in dopaminergic neurons of the ventral tegmental area (VTA) can suppress anxiety.


CRH neurons (red) in the amygdala

MPI of Psychiatry

In their latest study, Deussing’s group has expanded on these findings, providing more mechanistic insights into the “anxiolytic” CRH circuit. Published in the prestigious journal Nature Neuroscience, the scientists describe how the circuit originates in the extended amygdala, in a population of GABAergic neurons that produce CRH.

They traced these neurons and saw that they project down to a region of the midbrain called the VTA, one of the main dopamine-producing areas of the brain. The VTA is known to play a key role in reward and addiction, but here the authors explain how CRH and dopamine interact in anxiety-related behavior.

The CRH-containing projection neurons of the extended amygdala target CRH receptors on dopaminergic VTA neurons. As a result, this circuit can regulate dopaminergic transmission and in turn, emotional behavior.

Lead author of the current study Nina Dedic explains the significance of the findings: “We know that CRH is a major driver of the stress response and that a hyperactive CRH system is implicated in neuropsychiatric pathologies such as mood and anxiety disorders. However, in this study, we could show that CRH does not always act as an aversive, stress-inducing neuropeptide. In fact, specific CRH circuits are required to maintain a positive affective state under normal, stress-free conditions.”

Deussing, research group leader and head of the study explains: “We were surprised to find that a subset of GABAergic CRH neurons in the extended amygdala carry dendritic spines and co-express the postsynaptic density protein, Camk2a. These characteristics are more commonly seen in excitatory, glutamatergic neurons.”

He continues: “Our work suggests that CRH neurons in the extended amygdala are more diverse than we had originally thought. There are locally projecting interneurons as well as spiny, GABAergic, long-range projection neurons.”

In addition to revealing how CRH interacts with dopamine to regulate anxiety, Deussing’s group hopes that these findings will help to unravel the complex stress circuits and networks of the brain.

Weitere Informationen:

http://www.psych.mpg.de/2374355/pm1620-deussing-angst

Anke Schlee | Max-Planck-Institut für Psychiatrie

More articles from Life Sciences:

nachricht The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil
27.01.2020 | Technische Universität München

nachricht Superfast insights into cellular events
27.01.2020 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil

27.01.2020 | Life Sciences

Superfast insights into cellular events

27.01.2020 | Life Sciences

The 'place' of emotions

27.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>