Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea robot reveals 'schools' of animals in deep scattering layers

11.07.2017

Throughout the world ocean, animals congregate at certain depths, forming layers that can be hundreds of meters thick and may extend horizontally for dozens or even hundreds of kilometers. Because these dense layers of animals reflect sound waves, they are sometimes called "sound-scattering layers" or "deep scattering layers" (though they can occur near the sea surface). A new paper in Limnology and Oceanography shows that, rather than consisting of a random mixture of animals, these layers contain discrete groups or "schools" of squids, fishes, and crustaceans.

Deep scattering layers were first recognized during World War II, when sonar technicians observed their sound pulses bouncing off a "false seafloor" that actually consisted of millions of small fish or other animals. Over the following decades, marine biologists towed nets through the layers, bounced sound off them using ship-board sonar systems, and even observed them using small submarines. This research suggested that the layers were sometimes made up of one dominant type of animal but more often comprised a mixture of different animals.


This sonar data collected by an autonomous underwater vehicle shows animals within a sound-scattering layer. The different colors indicate sound intensity and indicate two distinct aggregations or schools (likely squid to the left and fish on the right), as well as two dolphins swimming within one of the aggregations.

Image courtesy Kelly Benoit-Bird

Marine acoustician Kelly Benoit-Bird, the lead author on the recent paper, brought this research into the 21st century, using deep-diving robots to take a close look at the animals within sound-scattering layers. In Fall 2013, her research team outfitted an autonomous underwater vehicle (AUV) with an advanced sonar system that acted like a very fancy fish finder. By programming the AUV to swim above and through several sound-scattering layers, the team collected sonar data that allowed Benoit-Bird to identify individual animals within these layers, and to track predators that dove into the layers to hunt.

While the AUV conducted sonar surveys within the sound-scattering layers, Benoit-Bird and her collaborators towed a net through these same layers. After bringing the net back on deck, they counted and identified every animal in the net between 1 and 35 centimeters (0.4 to 14 inches) long.

... more about:
»AUV »Aquarium »Bay Aquarium Research »dolphins »sonar

The team also categorized the animals in the layers by comparing data from two different frequencies of sonar on the AUV. For example, squids reflect sounds (sonar pings) at a frequency of 38,000 cycles per second (38 kilohertz) more strongly than sounds at 120 kilohertz, but fish reflect sound equally well at both frequencies.

By analyzing the strength and timing of the sonar pulses reflected back to the AUV, Benoit-Bird was able to estimate the sizes of individual animals in each layer and how far apart they were from their neighbors. Putting all these data together, the researchers created an index showing how similar or different each animal was from its neighbors.

The results of this analysis were surprising. It turned out that different types of animals were not randomly distributed within each layer, but formed groups with distinct boundaries. These groups consisted of animals of the same species and similar size. For example, small krill all swarmed together in a group that might be eight meters across. In the same deep scattering layer, right next to the krill swarm, might be a school of lanternfish 15 meters across, with little or no intermixing between the two groups.

The researchers also discovered that the physical extent of these groups varied depending on the size of the organisms. Smaller animals generally stayed closer to their neighbors, forming smaller groups. Most groups were about 100-animals wide in the horizontal dimension, regardless of whether they consisted of fish, squid, or shrimp. The spacing between the animals in each group was also very consistent, each animal staying at least one body length from its nearest neighbors.

The researchers speculate that these groups, consisting of lots of similar animals spaced evenly apart, could confuse visual predators such as dolphins, which target one animal at a time. This effect has previously been observed for schools of fish surrounded by open water near the sea surface, but has never before been seen in animals within deep scattering layers, where the schools are surrounded by other schools, and there is little or no sunlight. As Benoit-Bird pointed out, "Schooling was previously thought to occur mostly in surface waters, but this was just because we were limited in our perspective, looking down from the surface."

During several of their surveys, the researchers observed Risso's dolphins swimming near their research vessel. Using sonar data from the research ship and the AUVs, the team was able to track these dolphins as they swam through sound-scattering layers in search of prey (mostly squids). When a dolphin approached a group of squid, the sonar showed individual squid moving closer together until they were only half as far apart as in undisturbed groups. The squids also spaced themselves more precisely so that each animal was exactly the same distance from all of its neighbors.

Because the squids swam closer together when dolphins were around, their groups became smaller. At the same time, groups of animals on either side of the squid expanded, preventing gaps from forming between neighboring groups in the same layer. This cooperation among animals within a single layer suggests that there must be strong survival benefits in maintaining a continuous horizontal layer, and also in maintaining distinct groups within the layer.

Previous researchers have suggested that animals might just happen to congregate in deep scattering layers because they were searching for similar food or other resources. But as Benoit-Bird pointed out, "This study shows that sound-scattering layers are not just accidental aggregations; they are the result of intentional effort by both individual animals and groups of animals."

"Although we've only studied the characteristics of sound-scattering layers in Southern California so far, we know they occur all over the world," she said. "And as we are learning how much biomass is contained in these layers, we are also learning how the animals in the layers are preyed on by predators such as dolphins and tunas. Understanding how these layers form and how they are maintained in the face of predation will help us understand essential connections between the surface and deep-water food webs."

###

Original journal article:

Kelly J. Benoit-Bird, K.J. ,Moline, M.A., Southall, B.L., (2017). Prey in oceanic sound scattering layers organize to get a little help from their friends. Limnology and Oceanography: Published on line 30 June 2017. DOI: 10.1002/lno.10606

Online news release with images: http://www.mbari.org/undersea-robot-reveals-schools-of-animals-in-deep-scattering-layers/

Media Contact

Kim Fulton-Bennett
kfb@mbari.org
831-775-1835

 @MBARI_news

http://www.mbari.org 

Kim Fulton-Bennett | EurekAlert!

Further reports about: AUV Aquarium Bay Aquarium Research dolphins sonar

More articles from Life Sciences:

nachricht Gut microbiome regulates the intestinal immune system, researchers find
19.12.2018 | Brown University

nachricht Greener days ahead for carbon fuels
19.12.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>