Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where unconscious memories form

16.12.2010
A small area deep in the brain called the perirhinal cortex is critical for forming unconscious conceptual memories, researchers at the UC Davis Center for Mind and Brain have found.

The perirhinal cortex was thought to be involved, like the neighboring hippocampus, in "declarative" or conscious memories, but the new results show that the picture is more complex, said lead author Wei-chun Wang, a graduate student at UC Davis.

The results were published Dec. 9 in the journal Neuron.

We're all familiar with memories that rise from the unconscious mind. Imagine looking at a beach scene, said Wang. A little later, someone mentions surfing, and the beach scene pops back into your head.

Declarative memories, in contrast, are those where we recall being on that beach and watching that surf competition: "I remember being there."

Damage to a structure called the hippocampus affects such declarative "I remember" memories, but not conceptual memories, Wang said. Neuroscientists had previously thought the same was true for the perirhinal cortex, which is located immediately next to the hippocampus.

Wang and colleagues carried out memory tests on people diagnosed with amnesia, who had known damage to the perirhinal cortex or other brain areas. They also carried out functional magnetic resonance imaging (fMRI) scans of healthy volunteers while they performed memory tests.

In a typical test, they gave the subjects a long list of words, such as chair, table or spoon, and asked them to think about how pleasant they were.

Later, they asked the subjects to think up words in different categories, such as "furniture."

Amnesiacs with damage to the perirhinal cortex performed poorly on the tests, while the same brain area lit up in fMRI scans of the healthy control subjects.

The study helps us understand how memories are assembled in the brain and how different types of brain damage might impair memory, Wang said. For example, Alzheimer's disease often attacks the hippocampus and perirhinal cortex before other brain areas.

Co-authors on the study are Andy Yonelinas, professor of psychology and at the Center for Mind and Brain; Charan Ranganath, professor at the Center for Neuroscience; former UC Davis graduate student Michele Lazzara, now project coordinator at the University of Illinois at Chicago; and Robert Knight, professor of psychology at UC Berkeley.

The work was funded by the National Institutes of Health.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>