Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMN research pinpoints microRNA tied to colon cancer tumor growth

02.10.2014

Researchers at the University of Minnesota have identified microRNAs that may cause colon polyps from turning cancerous. The finding could help physicians provide more specialized, and earlier, treatment before colon cancer develops. The findings are published today in The Journal of Pathology.

The American Cancer Society estimates over 134,000 people will be diagnosed with colon cancer in 2014, despite the expanded screening processes now available. This year alone, about 50,000 people will die because of the disease.

Research was led by Subbaya Subramanian, Ph.D., assistant professor in the Division of Basic and Translational Research in the Department of Surgery in the University of Minnesota Medical School and member of the Masonic Cancer Center, University of Minnesota.

"With the advanced screenings we now have available, why are so many people still being diagnosed with colon cancer? We really wanted to understand if there was a way to stop the disease before it starts, before benign polyps became cancerous tumors," said Subramanian.

By looking at microRNA, Subramanian and his colleagues hoped to unlock what pieces were present in colon polyps that developed into cancer. They found miR-182 and miR-503 work together to transform a benign polyp to a cancerous tumor by holding down the cell's ability to create the tumor suppressing protein FBXW7.

This was determined by looking at a benign polyp cell line. In this line, miR-182 was present and appeared as a feature of the creation of adenomas, or polyps. Researchers then introduced miR-503 to the cell line and noted the partnership limited the tumor suppressing protein and polyps had a much higher potential for becoming cancerous.

Armed with this knowledge, the researchers then took a closer look at actual patient data. They examined the expression of miR-182 and miR-503 in colon cancer patients with a 12-year survival outcome data. When both microRNAs were present at higher levels, decreased patient survival was clearly correlated.

"It suggests a biomarker for colon cancer patients, something ideally physicians can one day screen for as a diagnostic and prognostic tool," said Subramanian.

Subramanian believes the next step will be determining if drugs are able to target miR-182 and -503, as well was what miR-182 and -503 do after suppressing FBXW7. He hopes to develop a clinical test as well as a translational target for treatments to be utilized in a clinical setting.

###

This study was supported by the Department of Surgery, University of Minnesota Medical School. Patient sets were utilized in partnership with the Mayo Clinic, Rochester, MN.

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit http://www.med.umn.edu to learn more.

Masonic Cancer Center, University of Minnesota is part of the University's Academic Health Center. It is designated by the National Cancer Institute as a Comprehensive Cancer Center. For more information about the Masonic Cancer Center, visit http://www.cancer.umn.edu or call 612-624-2620.

Caroline Marin | Eurek Alert!

Further reports about: CANCER Department Health Subramanian cancer patients cancerous colon colon cancer patients polyps tumor growth

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>