Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMMS researchers isolate gene mutations in patients with inherited amyotrophic lateral sclerosis

16.07.2012
Disruption of cytoskeleton pathways contribute to ALS pathogenesis

A new genetic mutation that causes familial amyotrophic lateral sclerosis (ALS), a fatal neurological disorder also known as Lou Gehrig's Disease, has been identified by a team of scientists led by researchers at the University of Massachusetts Medical School (UMMS).

Mutations to the profilin (PFN1) gene, which is essential to the growth and development of nerve cell axons, is estimated to account for one to two percent of inherited ALS cases. The finding, described today in the online edition of Nature, points to defects in a neuron's cytoskeleton structure as a potential common feature among diverse ALS genes.

"This discovery identifies what may possibly be a common biological mechanism involved across familial ALS cases regardless of genetics," said John Landers, PhD, associate professor of neurology and senior author of the study. "We know of at least three other ALS genes, in addition to PFN1, that adversely impact axon growth. If indeed, this is part of the disease's mechanism, then it might also be a potential target for therapeutics."

Robert Brown, MD, DPhil, a co-author on the study and chair of neurology at UMass Medical School, said "Dr. Landers has done great work in defining this new pathway for motor neuron death. We are delighted to have identified the defects in families from the U.S., Israel and France that we have been investigating for several years. Our finding is particularly exciting because it may provide new insights into ALS treatment targets."

ALS is a progressive, neurodegenerative disorder affecting the motor neurons in the central nervous system. As motor neurons die, the brain's ability to send signals to the body's muscles is compromised. This leads to loss of voluntary muscle movement, paralysis and eventually respiratory failure. The cause of most cases of ALS is not known. Approximately 10 percent of cases are inherited. Though investigators at UMass Medical School and elsewhere have identified several genes shown to cause inherited or familial ALS, almost 50 percent of these cases have an unknown genetic cause.

The current Nature study details the discovery of the PFN1 gene mutation among two large ALS families. Both families were negative for known ALS-causing mutations and displayed familial relationships that suggested a dominant inheritance mode for the disease. For each family, two affected members with maximum genetic distance were selected for deep DNA sequencing. To identify an ALS-causing mutation, genetic variations between the family members were identified and screened against known databases of human genetic variation, such as the 1000 Genomes Project. This narrowed down the resulting number of candidate, ALS-causing mutations to two within the first family and three within the second. Interestingly, both families contained different mutations within the same gene – PFN1, the likely causative mutation. With additional screening, the team documented that in a total of 274 families sequenced, seven contained a mutation to the PFN1 gene, establishing it as a likely cause for ALS.

While it is not certain how the PFN1 mutation causes ALS, the cellular functions it controls within the motor neurons are responsible for regulation of a number of activities, including the growth and development of the axon, the slender projection through which neurons transmit electrical impulses to neighboring cells, such as muscle. When introduced into motor neuron cells, normal PFN1 protein was found diffused throughout the cytoplasm. Conversely, the mutant PFN1 observed in ALS patients was found to collect in dense aggregates, keeping it from functioning properly. Motor neurons producing mutated PFN1 showed markedly shorter axon outgrowth.

"The discovery that mutant PFN1 interferes with axon outgrowth was very exciting to us," said Claudia Fallini, PhD, a postdoctoral researcher at Emory University School of Medicine who collaborated with the UMass Medical School authors to investigate PFN1's functions in cultured motor neurons. "It suggests that alterations in actin dynamics may be an important mechanism at the basis of motor neuron degeneration."

"In healthy neurons, PFN1 acts almost like a railroad tie for fibrous filaments called actin, which make up the axon" said Landers. "PFN1 helps bind these filaments to each other, promoting outgrowth of the axon. Without properly functioning PFN1 these filaments can't come together. Here we show that mutant PFN1 may contribute to ALS pathogeneses by accumulating in these aggregates and altering the actin dynamics in a way that inhibits axon outgrowth."

Drs. Landers and Brown are members of the Neurotherapeutics Institute at the University of Massachusetts Medical School.

Grant support for this project was provided by the NIH/NINDS 1R01NS065847 JEL, 1R01NS050557 RHB, RC2-NS070-342 RHB, Project ALS and P2ALS, the Angel Fund for ALS Research, the Muscular Dystrophy Association MDA173851 WR and AriSLA co-financed with support of 5x1000 Healthcare research of the Ministry of Health EXOMEFALS NT, CG, VS, JEL. Support was also provided by an SMA Europe fellowship to CF.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $270 million in research funding annually, 80 percent of which comes from federal funding sources. The work of UMMS researcher Craig Mello, PhD, an investigator of the prestigious Howard Hughes Medical Institute (HHMI), and his colleague Andrew Fire, PhD, then of the Carnegie Institution of Washington, toward the discovery of RNA interference was awarded the 2006 Nobel Prize in Physiology or Medicine and has spawned a new and promising field of research, the global impact of which may prove astounding. UMMS is the academic partner of UMass Memorial Health Care, the largest health care provider in Central Massachusetts.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>