Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMMS researchers isolate gene mutations in patients with inherited amyotrophic lateral sclerosis

16.07.2012
Disruption of cytoskeleton pathways contribute to ALS pathogenesis

A new genetic mutation that causes familial amyotrophic lateral sclerosis (ALS), a fatal neurological disorder also known as Lou Gehrig's Disease, has been identified by a team of scientists led by researchers at the University of Massachusetts Medical School (UMMS).

Mutations to the profilin (PFN1) gene, which is essential to the growth and development of nerve cell axons, is estimated to account for one to two percent of inherited ALS cases. The finding, described today in the online edition of Nature, points to defects in a neuron's cytoskeleton structure as a potential common feature among diverse ALS genes.

"This discovery identifies what may possibly be a common biological mechanism involved across familial ALS cases regardless of genetics," said John Landers, PhD, associate professor of neurology and senior author of the study. "We know of at least three other ALS genes, in addition to PFN1, that adversely impact axon growth. If indeed, this is part of the disease's mechanism, then it might also be a potential target for therapeutics."

Robert Brown, MD, DPhil, a co-author on the study and chair of neurology at UMass Medical School, said "Dr. Landers has done great work in defining this new pathway for motor neuron death. We are delighted to have identified the defects in families from the U.S., Israel and France that we have been investigating for several years. Our finding is particularly exciting because it may provide new insights into ALS treatment targets."

ALS is a progressive, neurodegenerative disorder affecting the motor neurons in the central nervous system. As motor neurons die, the brain's ability to send signals to the body's muscles is compromised. This leads to loss of voluntary muscle movement, paralysis and eventually respiratory failure. The cause of most cases of ALS is not known. Approximately 10 percent of cases are inherited. Though investigators at UMass Medical School and elsewhere have identified several genes shown to cause inherited or familial ALS, almost 50 percent of these cases have an unknown genetic cause.

The current Nature study details the discovery of the PFN1 gene mutation among two large ALS families. Both families were negative for known ALS-causing mutations and displayed familial relationships that suggested a dominant inheritance mode for the disease. For each family, two affected members with maximum genetic distance were selected for deep DNA sequencing. To identify an ALS-causing mutation, genetic variations between the family members were identified and screened against known databases of human genetic variation, such as the 1000 Genomes Project. This narrowed down the resulting number of candidate, ALS-causing mutations to two within the first family and three within the second. Interestingly, both families contained different mutations within the same gene – PFN1, the likely causative mutation. With additional screening, the team documented that in a total of 274 families sequenced, seven contained a mutation to the PFN1 gene, establishing it as a likely cause for ALS.

While it is not certain how the PFN1 mutation causes ALS, the cellular functions it controls within the motor neurons are responsible for regulation of a number of activities, including the growth and development of the axon, the slender projection through which neurons transmit electrical impulses to neighboring cells, such as muscle. When introduced into motor neuron cells, normal PFN1 protein was found diffused throughout the cytoplasm. Conversely, the mutant PFN1 observed in ALS patients was found to collect in dense aggregates, keeping it from functioning properly. Motor neurons producing mutated PFN1 showed markedly shorter axon outgrowth.

"The discovery that mutant PFN1 interferes with axon outgrowth was very exciting to us," said Claudia Fallini, PhD, a postdoctoral researcher at Emory University School of Medicine who collaborated with the UMass Medical School authors to investigate PFN1's functions in cultured motor neurons. "It suggests that alterations in actin dynamics may be an important mechanism at the basis of motor neuron degeneration."

"In healthy neurons, PFN1 acts almost like a railroad tie for fibrous filaments called actin, which make up the axon" said Landers. "PFN1 helps bind these filaments to each other, promoting outgrowth of the axon. Without properly functioning PFN1 these filaments can't come together. Here we show that mutant PFN1 may contribute to ALS pathogeneses by accumulating in these aggregates and altering the actin dynamics in a way that inhibits axon outgrowth."

Drs. Landers and Brown are members of the Neurotherapeutics Institute at the University of Massachusetts Medical School.

Grant support for this project was provided by the NIH/NINDS 1R01NS065847 JEL, 1R01NS050557 RHB, RC2-NS070-342 RHB, Project ALS and P2ALS, the Angel Fund for ALS Research, the Muscular Dystrophy Association MDA173851 WR and AriSLA co-financed with support of 5x1000 Healthcare research of the Ministry of Health EXOMEFALS NT, CG, VS, JEL. Support was also provided by an SMA Europe fellowship to CF.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $270 million in research funding annually, 80 percent of which comes from federal funding sources. The work of UMMS researcher Craig Mello, PhD, an investigator of the prestigious Howard Hughes Medical Institute (HHMI), and his colleague Andrew Fire, PhD, then of the Carnegie Institution of Washington, toward the discovery of RNA interference was awarded the 2006 Nobel Prize in Physiology or Medicine and has spawned a new and promising field of research, the global impact of which may prove astounding. UMMS is the academic partner of UMass Memorial Health Care, the largest health care provider in Central Massachusetts.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>