Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umbilical cord could be new source of plentiful stem cells

21.12.2009
Banking cords, as well as cord blood, may be invaluable

Stem cells that could one day provide therapeutic options for muscle and bone disorders can be easily harvested from the tissue of the umbilical cord, just as the blood that goes through it provides precursor cells to treat some blood disorders, said University of Pittsburgh School of Medicine researchers in the online version of the Journal of Biomedicine and Biotechnology.

Umbilical cord tissue cells can be expanded to greater number, are remarkably stable and might not trigger strong immune responses, said senior investigator Bridget M. Deasy, Ph.D., assistant professor in the Department of Orthopaedic Surgery, Pitt School of Medicine. The cells are obtained from the gelatinous material in the cord known as Wharton's jelly and from blood vessel walls.

"Our experiments indicate also that at least 21 million stem cells, and possibly as many as 500 million, could be banked from a single umbilical cord after the birth of a baby," she noted. "So, the cord could become an accessible source of a multitude of stem cells that overcomes many of the restrictions, such as limited quantity as well as donor age and donor sex issues, that come with other adult stem cell populations."

Dr. Deasy and her team analyzed sections of two-foot-long human umbilical cords that were donated for research, looking for cells in Wharton's jelly and blood vessel walls that displayed the characteristic protein markers found in stem cells derived from other sources. The researchers then sought to find the best way to isolate the stem cells from the cords, and tested them in the lab to confirm their ability to produce specialized cells, such as bone and cartilage, while retaining their invaluable ability to renew themselves.

To build on these findings, the team will test the umbilical cord stem cells in animal models of cartilage and bone repair, as well as muscle regeneration.

Co-authors of the paper include lead investigator Rebecca C. Schugar, of Pitt's Stem Cell Research Center, Department of Orthopaedic Surgery, and the Center for Cardiovascular Research, Washington University School of Medicine; Steven M. Chirieleison, Yuko Askew, M.D., Ph.D., Jordan J. Nance, and Joshua M. Evron, all of the Pitt Stem Cell Research Center; Kristin E. Wescoe, Benjamin T. Schmidt, both of Pitt's Department of Bioengineering; and Bruno Peault, Ph.D., of the University of California-Los Angeles and the McGowan Institute for Regenerative Medicine, a joint effort of Pitt and UPMC.

The research was supported by grants from the National Institute of Arthritis and Musculoskeletal Research and Children's Hospital of Pittsburgh of UPMC.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu
http://www.medschool.pitt.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>