Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultraviolet light-induced mutation drives many skin cancers, Stanford researchers find

08.09.2014

A genetic mutation caused by ultraviolet light is likely the driving force behind millions of human skin cancers, according to researchers at the Stanford University School of Medicine.

The mutation occurs in a gene called KNSTRN, which is involved in helping cells divide their DNA equally during cell division.

Genes that cause cancer when mutated are known as oncogenes. Although KNSTRN hasn't been previously implicated as a cause of human cancers, the research suggests it may be one of the most commonly mutated oncogenes in the world.

"This previously unknown oncogene is activated by sunlight and drives the development of cutaneous squamous cell carcinomas," said Paul Khavari, MD, PhD, the Carl J. Herzog Professor in Dermatology in the School of Medicine and chair of the Department of Dermatology. "Our research shows that skin cancers arise differently from other cancers, and that a single mutation can cause genomic catastrophe."

Cutaneous squamous cell carcinoma is the second most common cancer in humans. More than 1 million new cases are diagnosed globally each year. The researchers found that a particular region of KNSTRN is mutated in about 20 percent of cutaneous squamous cell carcinomas and in about 5 percent of melanomas.

A paper describing the research will be published online Sept. 7 in Nature Genetics. Khavari, who is also a member of the Stanford Cancer Institute and chief of the dermatology service at the Veterans Affairs Palo Alto Health Care System, is the senior author of the paper. Postdoctoral scholar Carolyn Lee, MD, PhD, is the lead author.

Lee and Khavari made the discovery while investigating the genetic causes of cutaneous squamous cell carcinoma. They compared the DNA sequences of genes from the tumor cells with those of normal skin and looked for mutations that occurred only in the tumors. They found 336 candidate genes for further study, including some familiar culprits. The top two most commonly mutated genes were CDKN2A and TP53, which were already known to be associated with squamous cell carcinoma.

The third most commonly mutated gene, KNSTRN, was a surprise. It encodes a protein that helps to form the kinetochore — a structure that serves as a kind of handle used to pull pairs of newly replicated chromosomes to either end of the cell during cell division. Sequestering the DNA at either end of the cell allows the cell to split along the middle to form two daughter cells, each with the proper complement of chromosomes.

If the chromosomes don't separate correctly, the daughter cells will have abnormal amounts of DNA. These cells with extra or missing chromosomes are known as aneuploid, and they are often severely dysfunctional. They tend to misread cellular cues and to behave erratically. Aneuploidy is a critical early step toward the development of many types of cancer.

The mutation in the KNSTRN gene was caused by the replacement of a single nucleotide, called a cytosine, with another, called a thymine, within a specific, short stretch of DNA. The swap is indicative of a cell's attempt to repair damage from high-energy ultraviolet rays, such as those found in sunlight.

"Mutations at this UV hotspot are not found in any of the other cancers we investigated," said Khavari. "They occur only in skin cancers."

The researchers found the UV-induced KNSTRN mutation in about 20 percent of actinic keratoses — a premalignant skin condition that often progresses to squamous cell carcinoma — but never in 122 samples of normal skin, indicating the mutation is likely to be an early event in the development of squamous cell carcinomas.

Furthermore, overexpression of mutant KNSTRN in laboratory-grown human skin cells disrupted their ability to segregate their DNA during cell division and enhanced the growth of cancer cells in a mouse model of squamous cell carcinoma.

Finally, Lee compared five patient-derived squamous cell carcinomas that had the KNSTRN mutation with five samples that did not have the mutation. Although both sets of cells were aneuploid, those with the mutation had the most severely abnormal genomes.

The identification of a new oncogene will allow researchers to better understand how these types of skin cancers develop. It may also give them clues about how to develop new therapies for the disease. In this case, it also neatly connects the dots between sun exposure and skin cancer.

"Essentially, one ultraviolet-mediated mutation in this region promotes aneuploidy and subsequent tumorigenesis," said Khavari. "It is critical to protect the skin from the sun."

###

Other Stanford co-authors of the study are graduate students Aparna Bhaduri and Whitney Johnson; research assistant Angela Mah; postdoctoral scholars Alexander Ungewickell, PhD, and Eon Rios, PhD; former undergraduate student Cody Aros; undergraduate student Christie Nguyen; senior research scientist Zurab Siprashvili, PhD; associate professor of biochemistry Aaron Straight, PhD; assistant professor of pathology and of dermatology Jinah Kim, MD; and clinical professor of dermatology Sumaira Aasi, MD.

The research was supported by the National Institutes of Health (grant AR43799) and the U.S. Veterans Affairs Office of Research and Development.

Information about Stanford's Department of Dermatology, which also supported the work, is available at http://dermatology.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://med.stanford.edu

Krista Conger | Eurek Alert!

Further reports about: DNA Dermatology Health Medicine carcinoma carcinomas chromosomes genes skin

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>