Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound improves stem cell transplants

06.09.2011
Transplantation of haematopoietic stem cells is an effective treatment for patients with malignant blood diseases. The composition and quality of the transplanted cells are crucial to the outcome. Researchers from Lund University, Sweden, have now developed a method to improve the quality of the transplanted cells using ultrasound for cell separation.

For patients with blood cancer, a blood stem cell transplant is often the only treatment that can cure the disease. The quality of the transplanted blood stem cells and the choice and composition of the transplanted cells can be crucial.

Current methods of collecting and processing stem cell products leave a lot to be desired. Recent results from Lund University indicate that it may be possible to considerably improve the quality of the blood stem cell product by using a method known as acoustic cell separation.

“The method was developed in the field of microtechnology and builds on basic engineering research from Lund University”, explains Professor Thomas Laurell, research group leader at the Faculty of Engineering. The method is expected to facilitate improvements in the processing of blood stem cells.

Associate Professor Stefan Scheding, senior consultant at the Department of Haematology at Skåne University Hospital and research group leader at the Stem Cell Centre at Lund University, is in charge of the preclinical development of the new method, which aims to effectively separate and possibly remove or concentrate cell populations which are normally found in standard blood stem cells products. The first step has been to show that the method works, by separating out platelets from stem cell products.

“Our hope is that it will become possible to produce the optimal stem cell product for each individual transplant patient”, says Stefan Scheding. “This would give us a good chance of improving the treatment of patients who would otherwise be at risk of suffering from serious transplant complications, such as graft-versus-host disease* and infections. By optimising the quality of the transplanted cells, it may even be possible to better fight the leukaemia cells that remain in the body despite the transplant treatment”, he explains.

The project is part of the research programme CellCare, which is funded by the Swedish Governmental Agency for Innovation Systems (Vinnova) and coordinated by Thomas Laurell.

Contact details:
Thomas Laurell, Thomas.Laurell@elmat.lth.se, +46 46 222 75 40 

Stefan Scheding, stefan.scheding@med.lu.se, +46 46 222 33 31
* graft-versus-host disease: a rejection reaction in some transplants such as bone marrow transplants

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0023074

Full bibliographic information
Dykes J, Lenshof A, Åstrand-Grundström I-B, Laurell T, Scheding S (2011) Efficient Removal of Platelets from Peripheral Blood Progenitor Cell Products Using a Novel Micro-Chip Based Acoustophoretic Platform. PLoS ONE 6(8): e23074. doi:10.1371/journal.pone.0023074
The scientific article has been published in the open access journal PLoS ONE: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0023074
Notes for editors
Contact details:
Thomas Laurell, Thomas.Laurell@elmat.lth.se, +46 46 222 75 40 

Stefan Scheding, stefan.scheding@med.lu.se, +46 46 222 33 31

Ingela Bjoerck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>