Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF researchers identify key factor in transition from moderate to problem drinking

21.10.2014

MicroRNA lowers levels of protective protein in brain regions important for the development of alcohol addiction

A team of UC San Francisco researchers has found that a tiny segment of genetic material known as a microRNA plays a central role in the transition from moderate drinking to binge drinking and other alcohol use disorders.

Previous research in the UCSF laboratory of Dorit Ron, PhD, Endowed Chair of Cell Biology of Addiction in Neurology, has demonstrated that the level of a protein known as brain-derived neurotrophic factor, or BDNF, is increased in the brain when alcohol consumed in moderation. In turn, experiments in Ron's lab have shown, BDNF prevents the development of alcohol use disorders.

In the new study, Ron and first author Emmanuel Darcq, PhD, a former postdoctoral fellow now at McGill University in Canada, found that when mice consumed excessive amounts of alcohol for a prolonged period, there was a marked decrease in the amount of BDNF in the medial prefrontal cortex (mPFC), a brain region important for decision making. As reported in the October 21, 2014 online edition of Molecular Psychiatry, this decline was associated with a corresponding increase in the level of a microRNA called miR-30a-5p.

MicroRNAs lower the levels of proteins such as BDNF by binding to messenger RNA, the molecular middleman that carries instructions from genes to the protein-making machinery of the cell, and tagging it for destruction.

Ron and colleagues then showed that if they increased the levels of miR-30a-5p in the mPFC, BDNF was reduced, and the mice consumed large amounts of alcohol. When mice were treated with an inhibitor of miR-30a-5p, however, the level of BDNF in the mPFC was restored to normal and alcohol consumption was restored to normal, moderate levels.

"Our results suggest BDNF protects against the transition from moderate to uncontrolled drinking and alcohol use disorders," said Ron, senior author of the study and a professor in UCSF's Department of Neurology. "When there is a breakdown in this protective pathway, however, uncontrolled excessive drinking develops, and microRNAs are a possible mechanism in this breakdown. This mechanism may be one possible explanation as to why 10 percent of the population develop alcohol use disorders and this study may be helpful for the development of future medications to treat this devastating disease."

One reason many potential therapies for alcohol abuse have been unsuccessful is because they inhibit the brain's reward pathways, causing an overall decline in the experience of pleasure. But in the new study, these pathways continued to function in mice in which the actions of miR-30a-5p had been tamped down—the mice retained the preference for a sweetened solution over plain water that is seen in normal mice.

This result has significant implications for future treatments, Ron said. "In searching for potential therapies for alcohol abuse, it is important that we look for future medications that target drinking without affecting the reward system in general. One problem with current alcohol abuse medications is that patients tend to stop taking them because they interfere with the sense of pleasure."

###

Also participating in the study were postdoctoral fellows Vincent Warnault, PhD, and Feng Liu, PhD; former postdoctoral fellow Gabriel Mercado Besserer, PhD, and Khanhky Phamluong, research associate.

The study was supported by grants from the National Institute on Alcohol Abuse and Alcoholism and from the State of California for medical research on alcohol and substance abuse through UCSF.

UCSF is the nation's leading university exclusively focused on health. Now celebrating the 150th anniversary of its founding as a medical college, UCSF is dedicated to transforming health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy; a graduate division with world-renowned programs in the biological sciences, a preeminent biomedical research enterprise and two top-tier hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital San Francisco. Please visit http://www.ucsf.edu.

Pete Farley | Eurek Alert!

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Physicists found a correlation between the structure and magnetic properties of ceramics

18.12.2018 | Physics and Astronomy

Unique insights into an exotic matter state

18.12.2018 | Physics and Astronomy

Physicists studied the influence of magnetic field on thin film structures

18.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>