Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA stem cell scientists discover new airway stem cell

28.06.2011
Researchers at UCLA have identified a new stem cell that participates in the repair of the large airways of the lungs, which play a vital role in protecting the body from infectious agents and toxins in the environment.

The airways protect the body by producing and clearing mucus from the airways. The mucus is largely produced by specialized mucus glands in the airway and the mechanisms of normal and excessive mucus production are not well understood. However, this newly discovered lung stem cell for the mucus glands will likely yield new insights into this critical process.

The study, by scientists with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, represents the first time anyone has found the cell of origin for the many types of cells that make up the mucus glands and that can also repair the surface epithelium. The finding, the study states, is of "major importance to the field of lung regeneration."

"We're very excited that we found this population of cells because it will allow us to study mechanisms of diseases of the upper airway," said Dr. Brigitte Gomperts, an assistant professor of pediatrics and hematology/oncology and senior author of the study. "For example, there currently are no treatments for excess mucus production, which we see in cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). But if we can understand the mechanisms of how these stem cells repair the mucus glands, then we may be able to find a way to put the brakes on the system and prevent mucus over production."

The study appears in the June 27, 2011 issue of the peer-reviewed journal Stem Cells.

Ahmed Hegab, a postdoctoral scholar in Gomperts lab and first author on the study, named the newly discovered cells sub-mucosal gland duct stem cells, because they are found in the ducts where the mucus is first secreted. Hegab and Gomperts had been looking for the lung stem cells for years, and created a model of repair of the airways in order to identify the location of the stem cells.

Once Gomperts and her team proved that the lung stem cells existed and found where they "lived," they set out to isolate them and confirm that they could self-renew, or grow more of themselves, and differentiate, turn into the cells that make up the mucus glands and surface epithelium. They created model systems in which these isolated stem cells did, in fact, make mucus glands with all the types of cells required to make mucus and repair the surface barrier of the large airways.

"Our ability to identify the stem cells and their regenerative ability has implications for the possible identification of novel therapeutic targets for airway diseases and potential cell-based therapies in the future," the study states.

The stem cells also may play a role in tumor initiation in lung cancer when the repair goes awry, although further study is needed to confirm this, said Gomperts, who is also a member of UCLA's Jonsson Comprehensive Cancer Center.

This study was funded by the California Institute of Regenerative Medicine, American Thoracic Society/COPD Foundation, the Concern Foundation, UCLA's Jonsson Comprehensive Cancer Center's Thoracic Oncology Program and Specialized Program of Research Excellence in lung cancer, the University of California Cancer Research Coordinating Committee and the Gwynne Hazen Cherry Memorial Laboratories.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Kim Irwin | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>