Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists make cells that enable the sense of touch

12.01.2018

Researchers are the first to create sensory interneurons from stem cells

Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have, for the first time, coaxed human stem cells to become sensory interneurons -- the cells that give us our sense of touch. The new protocol could be a step toward stem cell-based therapies to restore sensation in paralyzed people who have lost feeling in parts of their body.


Human embryonic stem cell-derived neurons (green) showing nuclei in blue. Left: with retinoic acid added. Right: with retinoic acid and BMP4 added, creating proprioceptive sensory interneurons (pink).

Credit: UCLA Broad Stem Cell Research Center/Stem Cell Reports

The study, which was led by Samantha Butler, a UCLA associate professor of neurobiology and member of the Broad Stem Cell Research Center, was published today in the journal Stem Cell Reports.

Sensory interneurons, a class of neurons in the spinal cord, are responsible for relaying information from throughout the body to the central nervous system, which enables the sense of touch. The lack of a sense of touch greatly affects people who are paralyzed. For example, they often cannot feel the touch of another person, and the inability to feel pain leaves them susceptible to burns from inadvertent contact with a hot surface.

"The field has for a long time focused on making people walk again," said Butler, the study's senior author. "'Making people feel again doesn't have quite the same ring. But to walk, you need to be able to feel and to sense your body in space; the two processes really go hand in glove."

In a separate study, published in September by the journal eLife, Butler and her colleagues discovered how signals from a family of proteins called bone morphogenetic proteins, or BMPs, influence the development of sensory interneurons in chicken embryos. The Stem Cell Reports research applies those findings to human stem cells in the lab.

When the researchers added a specific bone morphogenetic protein called BMP4, as well as another signaling molecule called retinoic acid, to human embryonic stem cells, they got a mixture of two types of sensory interneurons. DI1 sensory interneurons give people proprioception -- a sense of where their body is in space -- and dI3 sensory interneurons enable them to feel a sense of pressure.

The researchers found the identical mixture of sensory interneurons developed when they added the same signaling molecules to induced pluripotent stem cells, which are produced by reprogramming a patient's own mature cells such as skin cells. This reprogramming method creates stem cells that can create any cell type while also maintaining the genetic code of the person they originated from. The ability to create sensory interneurons with a patient's own reprogrammed cells holds significant potential for the creation of a cell-based treatment that restores the sense of touch without immune suppression.

Butler hopes to be able to create one type of interneuron at a time, which would make it easier to define the separate roles of each cell type and allow scientists to start the process of using these cells in clinical applications for people who are paralyzed. However, her research group has not yet identified how to make stem cells yield entirely dI1 or entirely dI3 cells -- perhaps because another signaling pathway is involved, she said.

The researchers also have yet to determine the specific recipe of growth factors that would coax stem cells to create other types of sensory interneurons.

The group is currently implanting the new dI1 and dI3 sensory interneurons into the spinal cords of mice to understand whether the cells integrate into the nervous system and become fully functional. This is a critical step toward defining the clinical potential of the cells.

"This is a long path," Butler said. "We haven't solved how to restore touch but we've made a major first step by working out some of these protocols to create sensory interneurons."

###

The research was supported by grants from the California Institute for Regenerative Medicine and its Cal State Northridge-UCLA Bridges to Stem Cell Research program, the National Institutes of Health and the UCLA Broad Stem Cell Research Center.

Media Contact

Mirabai Vogt-James
mvogt@mednet.ucla.edu
310-983-1163

 @uclahealth

http://www.uclahealth.org/ 

 

Mirabai Vogt-James | EurekAlert!

Further reports about: UCLA cell type human stem cells nervous system sense sense of touch stem cells

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>