Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA Scientists Identify Cell and Signaling Pathway that Regulates the Placental Blood Stem Cell Niche

02.03.2012
UCLA stem cell researchers have discovered a critical placental niche cell and signaling pathway that prevent blood precursors from premature differentiation in the placenta, a process necessary for ensuring proper blood supply for an individual’s lifetime.

The placental niche, a stem cell “safe zone,” supports blood stem cell generation and expansion without promoting differentiation into mature blood cells, allowing the establishment of a pool of precursor cells that provide blood cells for later fetal and post-natal life, said study senior author Dr. Hanna Mikkola, an associate professor of molecular cell and developmental biology and a researcher at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Mikkola and her team found that PDGF-B signaling in trophoblasts, specialized cells of the placenta that facilitate embryo implantation and gas and nutrient exchanges between mother and fetus, is vital to maintaining the unique microenvironment needed for the blood precursors. When PDGF-B signaling is halted, the blood precursors differentiate prematurely, creating red blood cells in the placenta, Mikkola said.

The study, done in mouse models, appears March 1, 2012, in the peer-reviewed journal Developmental Cell.

“We had previously discovered that the placenta provides a home for a large supply of blood stem cells that are maintained in an undifferentiated state. We now found that, by switching off one signaling pathway, the blood precursors in the placenta start to differentiate into red blood cells,” Mikkola said. “We learned that the trophoblasts act as powerful signaling centers that govern the niche safe zone.”

The study found that the PDGF-B signaling in the trophoblasts is suppressing production of Erythropoietin (EPO), a cytokine that controls red blood cell differentiation.

“When PDGF-B signaling is lost, excessive amounts of EPO are produced in the placenta, which triggers differentiation of red blood cells in the placental vasculature,” said Akanksha Chhabra, study first author and a post-doctoral fellow in Mikkola’s lab.

Mikkola and Chhabra used mouse models in which the placental structure was disrupted so they could observe what cells and signaling pathways were important components of the niche.

“The idea was, if we mess up the home where the blood stem cells live, how do these cells respond to the altered environment,” Chhabra said. “We found that it was important to suppress EPO where blood stem cell expansion is desired and to restrict its expression to areas where red blood cell differentiation should occur.”

The finding, Chhabra said, was exciting in that one single molecular change “was enough to change the function of an important blood stem cell niche.”

Mikkola said the blood stem cells expanded in the placental niche first seed the fetal liver and, ultimately, the bone marrow. The pool of blood stem cells could be compromised if the cells begin to differentiate in the placenta.

“We’ve been able to learn in the last few years about the niche cells in the adult bone marrow, but we didn’t know much about them during fetal development,” Mikkola said. “All hematopoietic niches in the embryo are unique in their own way, the stem cells are made in one location, expand in another and differentiate somewhere else. This is the first study that identifies a key niche cell and a signaling pathway in the placenta that allows it to do what it was destined to do, create a safe zone for the blood stem cells.”

The three-year study was funded by the National Institutes of Health, the California Institute of Regenerative Medicine, an Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research Innovation Award and the Jonsson Cancer Center Foundation at UCLA.

“The discovery of PDGF-B signaling in the trophoblasts as an important regulator of local EPO levels in the placenta reveals a developmental stage and niche specific mechanism for regulating EPO expression, which is critical for governing the fates of blood stem cells during their developmental journey,” the study states. “This work gives new insights into the goal of recreating the different types of hematopoietic niches in vitro as well as furthers our understanding of the etiology of developmental defects originating from the placenta.”

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.mednet.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch
03.04.2020 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>