Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers discover aggressive prostate and lung cancers are driven by common mechanisms

05.10.2018

UCLA researchers have discovered a common process in the development of late-stage, small cell cancers of the prostate and lung. These shared molecular mechanisms could lead to the development of drugs to treat not just prostate and lung cancers, but small cell cancers of almost any organ.

The key finding: Prostate and lung cells have very different patterns of gene expression when they're healthy, but almost identical patterns when they transform into small cell cancers. The research suggests that different types of small cell tumors evolve similarly, even when they come from different organs.


Microscopic image of small cell neuroendocrine prostate cancer: cancer cells are seen expressing diagnostic prostate cancer markers in green and red (blue color indicates the cell nucleus)

Credit: Jung Wook Park & Owen Witte

The study, led by Dr. Owen Witte, founding director of the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and professor of microbiology, immunology and molecular genetics, was published in the journal Science. Witte collaborated with scientists from UCLA's Crump Institute for Molecular Imaging and the UCLA Jonsson Comprehensive Cancer Center.

Cancers that become resistant to treatment often develop into small cell cancers -- also known as small cell neuroendocrine carcinomas, or SCNCs -- which generally have extremely poor prognoses. Certain cancers can evade treatment in part by changing cell types -- from aggressive adenocarcinoma to small cell carcinoma, for example.

Previous research hinted that small cell cancers from different organs may be driven by common mechanisms, but the UCLA study is the first to so clearly describe the steps in their evolution.

"Small cell cancers of the lung, prostate, bladder, and other tissues were long thought to be similar in name alone -- and they were treated by oncologists as different entities," Witte said. "Over the past few years, though, researchers have increasingly begun to realize that there are similarities in the cancers, and that's what our work confirms."

Dr. Jung Wook Park, the study's first author, and UCLA collaborators explored the potential parallels between the cancer types by transplanting human prostate cells with five genes, known collectively as PARCB, into mice. When those cells grew in the mice, they displayed unique features of human small cell neuroendocrine carcinomas.

The team also identified that for small cell neuroendocrine carcinomas to develop in the prostate, two tumor suppressor genes, TP53 and RB1, which are known for protecting normal cells from transforming into cancer cells, had to be simultaneously inactivated when PARCB was introduced.

Additional tests confirmed striking similarities between the PARCB-SCNC cells and small cell prostate cancer cells from humans. In particular, RNA expression and the turning on and off of certain genes were nearly identical.

"The similarities between the PARCB-SCNC cancers and human small cell prostate cancer samples were extraordinary," Witte said. "If you blindly gave the data sets to any statistician, they would think they were the same cells."

The team also looked at large databases of gene expression, to compare the patterns of gene expression in their PARCB-SCNC cells to cancers of other organs. They found that the pattern of gene expression in PARCB-SCNC cells was extremely similar to those of both prostate and lung small cell cancers.

Next, they tested whether PARCB genes could alter healthy cells from human lungs into small cell lung cancers, and the scientists found that they could.

The team now is working on mapping which genes control the entire cascade of events that underlies the transition to small cell cancer.

"Our study revealed shared 'master gene regulators' -- the key proteins that control expression of multiple genes in small cell cancer cells," Witte said. "Studying the network of the master gene regulators could lead to a new way of combating deadly cancers."

###

The research was supported by the Broad Stem Cell Research Center Stem Cell Training Program and Hal Gaba Fund for Prostate Cancer Research, the UCLA Medical Scientist Training Program, the UCLA Specialized Program of Research Excellence in Prostate Cancer, the National Institutes of Health, the National Cancer Institute, the Prostate Cancer Foundation, the Department of Defense, the American Cancer Society and the W.M. Keck Foundation.

Alice Walton

Media Contact

Tiare Dunlap
tdunlap@mednet.ucla.edu
310-206-8367

 @uclahealth

http://www.uclahealth.org/ 

Alice Walton | EurekAlert!
Further information:
http://dx.doi.org/10.1126/science.aat5749

Further reports about: CANCER UCLA cancer cells carcinomas genes lung cancers prostate

More articles from Life Sciences:

nachricht Dangerous pathogens use this sophisticated machinery to infect hosts
20.05.2019 | California Institute of Technology

nachricht When bees are freezing
20.05.2019 | Max-Planck-Institut für Polymerforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New flying/driving robot developed at Ben-Gurion University of the Negev

20.05.2019 | Power and Electrical Engineering

A new approach to targeting cancer cells

20.05.2019 | Health and Medicine

5G transmission masts made of wood for an attractive and sustainable cityscape

20.05.2019 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>