Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers develop way to strengthen proteins with polymers

22.05.2012
Findings could mean good news for protein-based therapeutics

Proteins are widely used as drugs — insulin for diabetics is the best known example — and as reagents in research laboratories, but they react poorly to fluctuations in temperature and are known to degrade in storage.

Because of this instability, proteins must be shipped and stored at regulated temperatures, resulting in increased costs, and sometimes must be discarded because their "active" properties have been lost. Manufacturers of protein drugs will generally add substances known as excipients, like polyethylene glycol, to the proteins to prolong their activity.

In a new study published in the Journal of the American Society of Chemistry (DOI: 10.1021/ja2120234), investigators from the UCLA Department of Chemistry and Biochemistry and the California NanoSystems Institute at UCLA (CNSI) describe how they synthesized polymers to attach to proteins in order to stabilize them during shipping, storage and other activities. The study findings suggest that these polymers could be useful in stabilizing protein formulations.

The polymers consist of a polystyrene backbone and side chains of trehalose, a disaccharide found various plants and animals that can live for long periods with very little or no water. An example many people will recognize is Sea- Monkeys — the 'novelty aquarium pet' introduced in 1962. Sea–Monkeys can be purchased as kits that contain a white powder; when water is added, the powder becomes small shrimp whose long tails are said to resemble those of monkeys.

Trehalose is known to stabilize proteins when water is removed, and as a result, it is an additive in several protein drug formulations approved by the Food and Drug Administration (FDA) to treat cancer and other conditions.

"Our polymers were synthesized by a controlled radical polymerization technique called reversible addition-fragmentation chain transfer (RAFT) polymerization in order to have end groups that can attach to proteins to form what is called a protein-polymer conjugate," said Heather Maynard, a UCLA associate professor of chemistry and biochemistry and a member of the CNSI. "We found that the polymers significantly stabilized the protein we used — lysozyme — better to lyophilization (freeze-drying, in which water is removed from the protein) and to heat than did the protein with no additives."

The research team found that attaching the polymer covalently to the protein — that is, forming a protein-polymer conjugate — stabilized the protein to lyophilization better than adding the non-conjugated polymer at the same concentration.

The team also found that the polymers stabilized lysozyme significantly better than the currently used excipients trehalose and polyethylene glycol, depending on the stress and conditions used.

The Maynard research group is currently exploring the use of their polymer as a stabilizer by attaching it or adding it to FDA–approved protein therapeutics. In addition, they are investigating the mechanism of how the polymer stabilizes proteins.

The research team included Rock J. Mancini and Juneyoung Lee, both graduate students of chemistry and biochemistry in the Maynard research group.


The research is supported by the National Science Foundation.
The paper is available at http://pubs.acs.org/doi/abs/10.1021/ja2120234.
The California NanoSystems Institute is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. The total amount of research funding in nanoscience and nanotechnology awarded to CNSI members has risen to over $900 million. UCLA CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Jennifer Marcus | EurekAlert!
Further information:
http://www.ucla.edu

Further reports about: CHEMISTRY CNSI NanoSystems UCLA building block polyethylene glycol

More articles from Life Sciences:

nachricht Lab-free infection test could eliminate guesswork for doctors
26.02.2020 | University of Southampton

nachricht MOF co-catalyst allows selectivity of branched aldehydes of up to 90%
26.02.2020 | National Centre of Competence in Research (NCCR) MARVEL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>