UCI-led team finds new way to boost potency of marijuana-like chemical in body

UC Irvine and Italian researchers have discovered a new means of enhancing the effects of anandamide – a natural, marijuana-like chemical in the body that provides pain relief.

Led by Daniele Piomelli, UCI's Louise Turner Arnold Chair in the Neurosciences, the team identified an “escort” protein in brain cells that transports anandamide to sites within the cell where enzymes break it down. They found that blocking this protein – called FLAT – increases anandamide's potency.

Previous work by the researchers indicates that compounds boosting anandamide's natural abilities could form the basis of pain medications that don't produce sedation, addiction or other central nervous system side effects common with existing painkillers, such as opiates.

“These findings raise hope that the analgesic properties of marijuana can be harnessed for new, safe drugs,” said Piomelli, a professor of pharmacology. “Specific drug compounds we are creating that amplify the actions of natural, marijuana-like chemicals are showing great promise.”

For the study, which appears in the Nov. 20 online version of Nature Neuroscience, he and his colleagues used computational methods to understand how FLAT binds with anandamide and escorts it to cell sites to be degraded by fatty acid amide hydrolase (FAAH) enzymes.

Anandamide has been dubbed “the bliss molecule” for its similarities to the active ingredient in marijuana. A neurotransmitter that's part of the body's endocannabinoid system, it's been shown in studies by Piomelli and others to play analgesic, antianxiety and antidepressant roles. It's also important in regulating food consumption. Blocking FAAH activity enhances several effects of anandamide without generating the “high” seen with marijuana.

Piomelli and his collaborators speculate that inhibiting FLAT (FAAH-like anandamide transporters) might be particularly useful in controlling certain forms of pain – that caused by damage to the central nervous system, for example – and curbing addiction to such drugs as nicotine and cocaine.

Researchers from UCI, Italy's University of Parma and University of Bologna, and the Italian Institute of Technology participated in the study, which was supported by grants from the U.S. National Institute on Drug Abuse, the U.S. National Institute on Alcohol Abuse & Alcoholism, and the U.S. National Institute of General Medical Sciences.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County's largest employer, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts. For UCI breaking news, visit www.zotwire.uci.edu.

Media Contact

Tom Vasich EurekAlert!

More Information:

http://www.uci.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors