Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Santa Barbara researchers uncover new pathways in bacterial intercellular competition

09.04.2013
There's an epic battle taking place that's not on the national radar: intercellular competition. While it's not an Olympic event, new research from UC Santa Barbara demonstrates that this microscopic rivalry can be just as fierce as humans going for the gold.

Christopher Hayes, UCSB associate professor of molecular, cellular and developmental biology, along with postdoctoral fellow Sanna Koskiniemi, graduate student James Lamoureux, and others, examined the role certain proteins, called rearrangement hotspots (Rhs), play in intercellular competition in bacteria. The findings appear today in the Proceedings of the National Academy of Sciences.

Rhs proteins and related YD-peptide repeat proteins are present in a wide range of bacterial species and other organisms, including human beings, where they help establish communications between neurons in the brain when the visual system is developing. Hayes and his team found that Rhs proteins enable Dickeya dadantii 3937, a phytopathogenic bacterium causing soft rot diseases on many crops, to compete with members of its own kind through touch-dependent killing.

While Rhs have been recognized for more 30 years, their function has been enigmatic. This new research sheds light on the mystery. Rhs proteins possess a central repeat region, characteristically the YD-repeat proteins also found in humans, as well as variable C-terminal sequences, which have toxin activity. C-terminal regions are highly variable between bacterial strains even in the same species, indicating that a wide variety of weapons are deployed.

"Bacteria almost always have a different Rhs toxins," explained Hayes. "No one really knows why, but perhaps the toxins are rapidly evolving, driven by intercellular competition. In essence, these cells are fighting it out with each other. It's like an arms race to see who has the best toxins."

Cellular competition is analogous to that between humans and reflects a scarcity of resources. Like people, bacteria need a place to live and food to eat. "We think these systems are important for bacterial cells to establish a home and defend it against competitors," said Hayes. "In fact, bacteria have many systems for competition. And as we uncover more mechanisms for intercellular competition, we realize this is a fundamental aspect of bacterial biology."

These findings demonstrate that Rhs systems in diverse bacterial species are toxin delivery machines. "We have been able to show that gram-negative (Dickeya dadantii) as well as gram-positive (Bacillus subtilis) bacteria use Rhs proteins to inhibit the growth of neighboring bacteria in a manner that requires cell-to-cell contact," said Koskiniemi, the paper's lead author.

The toxic part of Rhs at the tip (the C-terminal region) is delivered into target cells after cell-to-cell contact. Some toxic tips destroy DNA and others destroy transfer RNA, which is essential for protein synthesis. These toxin activities help the bacteria expressing them to outcompete other members of the same species not carrying an antidote.

This work may help scientists design Rhs-based bacterial probiotics that kill specific pathogens but leave most normal flora unharmed. The research was supported by grants from the National Science Foundation and National Institutes of Health and by fellowships from the Carl Tryggers and Wenner-Gren Foundations.

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>