Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of Minnesota researchers find master gene behind blood vessel development

06.02.2009
In a first of its kind discovery, University of Minnesota researchers have identified the "master gene" behind blood vessel development. Better understanding of how this gene operates in the early stages of development may help researchers find better treatments for heart disease and cancer.

Using genetically engineered mice, researchers with the University of Minnesota Medical School's Lillehei Heart Institute were able to identify a protein, Nkx2-5, which activates a certain gene, and in turn, determines the fate of a group of cells in a developing embryo.

"If we can understand the mechanism, or how certain stem cells choose a particular path, we can alter it to prevent or treat disease," said Daniel Garry, M.D., Ph.D., lead researcher, executive director of the institute, and chief of the cardiovascular division in the Department of Medicine. "This gene discovery provides the key to unlocking the secret of how blood vessels grow."

Researchers knew that certain precursor cells, or progenitor cells, become the three types of cells that make up the cardiovascular system: smooth muscle, endothelial (blood vessel), and cardiac muscle. What they didn't know, until now, is how those progenitor cells end up as one type or another. Garry likened the team's discovery to finding the recipe of how certain cells become blood vessels.

By understanding how the cells develop, Garry said they will be able to study how they might modify the gene to create a desired response.

"Next we are looking at how we could over-express the gene or knock it down," he said.

For example, in the case of heart disease or heart failure, they may be able to "turn on" the gene to make it create new, healthy blood vessels. Or, in the case of cancer, they could turn off the gene to limit blood supply to a tumor, causing it to shrink.

Sara Martin | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>