U-M researchers identify new genetic cause for chronic kidney disease

The research was published July 8 in the journal Nature Genetics.

“In developed countries, the frequency of chronic kidney disease is continually increasing for unknown reasons. The disease is a major health burden,” says Friedhelm Hildebrandt, M.D., the paper’s senior author and professor of pediatrics and of human genetics at C.S. Mott Children’s Hospital.

Using whole exome sequencing, Hildebrandt and his colleagues studied a model disorder for renal fibrosis, nephronophthisis, and detected a new single-gene cause of CKD that implicates a disease mechanism formerly not related to CKD — DNA damage response signaling (DDR).

“Since DNA damage is cause by a whole variety of chemical compounds it may now be important to see whether certain ‘genotoxins’ may play a role in the increase of CKD,” says Hildebrandt who is also an investigator for the Howard Hughes Medical Institute.

The researchers identified mutations of Fanconi anemia-associated nuclease 1 (FAN1) as causing karyomegalic interstitial nephritis (KIN) in patients with CKD. Depletion of fan1 in a zebrafish model of disease revealed increased DDR, apoptosis, and kidney cysts akin to nephronophthisis.

“Our findings implicate susceptibility to environmental genotoxins and inadequate DNA repair as novel mechanisms of renal fibrosis and CKD,” Hildebrandt said.

Additional authors: Multiple authors include, from the University of Michigan: Weibin Zhou and Edgar A. Otto as co-first authors, Department of Pediatrics; Joseph Washburn, Comprehensive Cancer Center.

Funding: National Institutes of Health; Burroughs Wellcome Fund Career Award for Medical Scientists; Doris Duke Charitable Distinguished Clinical Scientist Award; National Institute of Diabetes and Digestive and Kidney Diseases.

Media Contact

Mary Masson EurekAlert!

More Information:

http://www.umich.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors