Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researchers find key interaction that controls telomeres

17.02.2010
Finding could be basis for developing new cancer therapies

In the dominoes that make up human cells, researchers at the University of Michigan Comprehensive Cancer Center have traced another step of the process that stops cells from becoming cancerous.

It starts with the enzyme telomerase, which affects the caps, or telomeres, at the end of a chromosome. Telomeres shorten over time. But telomerase prevents this from happening, making the cell immortal. If cancer is triggered in the cell, the presence of telomerase leads to the growth of the cancer.

Telomerase is kept in control by the protein TRF1, which keeps the telomeres operating correctly. But another protein, Fbx4, can bind to TRF1 and degrade it, causing the telomeres to lengthen.

Now, researchers have discovered, a third protein, TIN2, can step in and override Fbx4 by binding to TRF1 first and preventing Fbx4 from attaching to it.

This finding paves the way for developing a drug that acts like TIN2, keeping everything in check and stopping the first domino from falling.

Results of the study appear in the Feb. 16 issue of Developmental Cell.

“In 90 percent of cancers, no matter what caused the cancer to form, it needs telomerase activity to maintain the cell. Without telomerase, the cell will die. Our work is key to understanding a detailed mechanism for how these molecules interact and how to design a drug to block Fbx4,” says senior author Ming Lei, Ph.D., assistant professor of biological chemistry at the University of Michigan Medical School.

The researchers found that the location in the molecule where Fbx4 binds to TRF1 overlaps with where TIN2 binds to TRF1. Where both Fbx4 and TIN2 are present, the TIN2 wins out and binds to the TRF1 first. This blocks Fbx4 from binding to the TRF1, thereby stabilizing TRF1 and keeping the telomere length in control.

The researchers are now looking at peptides that mimic TIN2’s binding to TRF1, in order to block Fbx4. The work is still in preliminary stages and no new therapies are being tested in patients.

If a drug is discovered, it could impact all cancer types. Currently, molecularly targeted therapies address a pathway or gene that’s involved in only specific types of cancer. But telomerase is involved in all types of cancer.

“If we find a drug that can inhibit telomerase activity in any fashion, that could be a universal cancer drug,” says Lei, a Howard Hughes Medical Institute Early Career Scientist.

Additional authors: Zhixiong Zeng, Wei Wang, Yuting Yang, Yong Chen, Xiaomei Yang, J. Alan Diehl, and Xuedong Liu

Funding: National Institutes of Health, American Cancer Society Research Scholar grant, Sidney Kimmel Scholar Award, National Cancer Institute, National Institute of General Medical Science, and the U.S. Department of Energy’s Office of Basic Energy Sciences

Reference: Developmental Cell, Vol. 18, No. 2, pp. 214-225

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>