Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M experts develop technique to duplicate immunity boosting cells to unprecedented levels

19.05.2011
New technique will give patients a better chance of having a successful bone marrow or organ transplant

University of Minnesota Medical School researchers have discovered a method to quickly and exponentially grow regulatory T-cells – also known as "suppressor cells." The new process enables replication of the cells by tens of millions in several weeks, a dramatic increase over previous duplication methods. Historically, regulatory T-cells have been difficult to replicate.

The new technique will give patients a better chance of having a successful bone marrow or organ transplant, and will have profound implications for patients with autoimmune diseases such as lupus, type 1 diabetes, Crohn's disease and multiple sclerosis.

The use of the new replication technique has already shown promising effects in the treatment of acute graft-versus-host disease; a post-transplant condition in which T-cells from the donor's bone marrow recognizes a recipient's body as foreign, and tries to attack.

"When regulatory T-cells don't respond to inflammation quickly enough to suppress an immune system response, the patient's own immune response can do considerable harm after a transplant, injuring organs, joints and other tissues of the body," said Dr. Bruce Blazar, senior author of the study and Director of the Clinical and Translational Science Institute at the U of M.

Compounding the challenge is that humans have a limited supply of regulatory T-cells, Blazar said. So even if the immune system's cells respond appropriately, there may not be enough suppressor cells to stop errant reactions in time before the immune response causes widespread tissue damage.

Researchers felt that by developing a way to replicate the cells – which have been historically challenging to coax into high rates of duplication – they could increase transplantation success rates.

Between 30-40 percent of all related bone marrow transplant patients experience graft-versus-host disease, and between 10-30 percent of kidney transplants and 60-80 percent of liver transplant recipients experience acute rejection, according to the National Institutes of Health.

About the New Method

The immunology team, led by Blazar, developed a method to extract regulatory T-cells from blood and subsequently deliver the right combination of signals to make the cells replicate up to 50 million fold. Previous methods to duplicate these cells led to only 70-fold expansion at best.

The findings are published in the May 18 edition of Science Translational Medicine.

"The ability to deliver such large quantities of these cells to patients before they undergo transplantation significantly reduces the chances of graft versus host disease and rejection of a transplanted organ," Blazar said.

In animal models and in human clinical trials (where smaller doses of regulatory T cells were given to patients), Blazar's hypothesis came to fruition: Animals and patients became less likely to develop severe immune reactions that caused tissue damage.

The next step in Blazar's work is phase 1 human clinical testing headed by the U of M's Dr. John Wagner, a world renowned researcher who has been a leader in the field of blood and marrow transplantation. Wagner plans to lead a team of doctors who will administer increasing doses of regulatory T-cells before bone marrow transplants using Blazar's new expansion method.

"This is truly exciting and a major, major breakthrough with profound implications in the treatment of our patients," Wagner said. "If we can super charge patients' immune systems before we do a transplant, we hope to eliminate the chance of graft-versus-host disease or rejection of the transplanted organ. Furthermore, we hope to move these trials ahead quickly to treat autoimmune diseases which affect hundreds of thousands of people worldwide."

Alongside Drs. Blazar and Wagner, U of M assistant professor Dr. Keli Hippen, the lead investigator of the study, pushed this new technology forward.

Collaborators from the University of Pennsylvania provided the key cell lines that made the research possible. Penn scientists engineered artificial Antigen Presenting Cells (aAPCs) which massively expanded regulatory T-cells. The process by which they were replicated could be used to generate a master cell bank that could be used to treat a large number of patients, making therapy much more feasible and cost effective.

The study was funded by National Institutes of Health, the Leukemia and Lymphoma Society and the Childrens' Cancer Research Fund.

Nick Hanson | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>