Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twitter principles of social networking increase family success in nesting birds

24.10.2012
New research carried out by scientists at Universities in Exeter, France and Switzerland reveals for the first time the importance of social networking in producing a successful family.

The study found that, regardless of how big and healthy individual chicks are, what really matters to their chances of surviving and breeding is how siblings in the nest interact with each other, with cooperative families faring best.

Differences in patterns of feeding between mothers and fathers were a key factor in determining the behaviour of their offspring, according to the study published online today in the journal Proceedings of the Royal Society B. Mothers selected weaker, hungrier nestlings while fathers did the opposite, choosing those who were the most competitive.

Dr Nick Royle, from the University of Exeter, was involved in the study, alongside scientists from Universities in Toulouse, Bern and Basel. He said: "Whilst it is well-established that large, strong offspring are generally expected to be more successful than small, less well-nourished offspring, it has not been previously shown that the success of both individuals and families as a whole depends on the structure of social interactions among offspring."

"As any parent knows, parental care can be hard work and there is often a squeeze on the availability of resources in families. This sets the scene for conflicts of interest among family members over how these resources are allocated. Our study shows that the most successful families are those that are best at resolving these conflicts; parents and offspring that are most effective at responding to each other are the most successful."

Scientists from the University of Exeter's Centre for Ecology & Conservation worked with colleagues from the Universities of Basel and Bern in Switzerland and the French Université Paul Sabatier alongside French scientific research organisation CNRS. It was funded by the Natural Environment Research Council and the Swiss National Science Foundation.

63 broods of begging great tits breeding in nest boxes in woods around Bern in Switzerland were filmed when the nestlings were 10 days old, when both parents feed the young using different methods of selecting which nestlings receive food. The researchers examined the network of social interaction between the siblings, and then monitored the parents and their offspring to see whether they survived and went on to breed the following year.

Great tit mothers prefer to feed hungrier, smaller nestlings whereas fathers choose stronger, larger nestlings to feed. So in families where mothers provide most of the food, the young are more 'gregarious'. They moved around more and interacted more strongly with one another as the hungrier nestlings tried to move closer to their mothers to be fed. In broods where fathers fed more than mothers, nestlings moved around much less because the more competitive offspring took up the best positions near him.

Small and medium-sized broods fared better when the mother was the main feeder, whilst larger broods were more successful when the father provided most of the feeds. This could be because of constraints on space in larger families, making it harder for chicks to move around and jostle for position and easier to respond to fathers, with their simpler feeding rules, not mothers.

Dr Nick Royle concluded: "Users of Twitter will know that the more interactions they have, the more successful their profile is likely to be, and it's similar for nesting great tits; at least at nests where mothers provide most of the feeds. When fathers do most of the work offspring are much less gregarious. For young great tits social networking is related to the amount of physical contact each nestling has with their siblings, not the amount of tweeting they do. But using our social networks measure enabled us to demonstrate a novel link between how family members interact with one another and the success of those families."

"Our approach is not just applicable to social interactions in birds, however, or just for families. It could also be applied to understanding what patterns of social organisation best determine success between competing groups of humans, such as in business or team sports."

Louise Vennells | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>