Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twist-and-glow molecules aid rapid gas detection

16.01.2012
Fast and sensitive detection and identification of air-borne gases is now possible using a newly developed sensor

In an emergency such as a factory fire, ascertaining which gases are present in the air is critical to preventing or minimizing poisoning. This requires gas sensors that react quickly and provide a visual signal. However, many existing detection systems work for only one gas, or they use a chemical reaction that is too slow to respond in emergency situations.

Now, Takashi Uemura of Kyoto University and colleagues at several other Japanese institutes, including the RIKEN SPring-8 Center, have created a gas sensor that works rapidly, emits a clear fluorescent signal, and detects different gases1. Most importantly, the new sensor can distinguish between gases with similar chemical and physical properties.

Uemura and colleagues’ sensor contains so-called ‘flexible porous coordination polymers’ coupled with fluorescent reporter molecules that change structure, and therefore emit signals, according to different gases present in the air.

“We thought that the incorporation of functional polymers into flexible porous coordination matrices would show unique dynamic properties,” says Uemura. He and his colleagues therefore inserted a fluorescent reporter molecule into the coordination polymer, whereupon the whole combined structure twisted out of shape.

In this normal and twisted state, the fluorescent light from the reporter is quite dim and green. Once gas molecules are introduced, the structure begins to return to its original shape, and the fluorescence returns, brightening as the gas pressure intensifies. For example, the fluorescence changes from green to blue when the molecule adsorbs carbon dioxide.

By this method, the sensor allows regular monitoring of both the type of gas and its concentration in the air. Crucially, the fluorescent response begins within seconds upon interaction with the gas and is complete within minutes, allowing emergency responders to make decisions quickly (Fig. 1).

In addition to these attributes, this is the first such detection system shown to work for gases with almost identical physical properties, the team notes. “Physical properties, such as size, shape, and boiling points, are very similar between carbon dioxide and acetylene, for example, so it is difficult to distinguish between them,” explains Uemura. “Our material has carboxylate sites in the pore, and these sites can bind to acetylene more strongly than carbon dioxide.

“This unique cooperative change of host and guest could allow us to design new advanced materials,” he adds. By investigating different flexible host structures and other ‘guest’ reporter molecules, the researchers believe they could create gas detection systems for a variety of different gases and other applications in the future.

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>