Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turtles use muscle power to breathe due to rigid shell

07.11.2014

Turtle shells are unique in the animal kingdom. In order to be able to breathe in this inflexible casing, tortoises have a muscle sling which is attached to the shell to ventilate the lung.

A team of researchers including paleontologist Torsten Scheyer from the University of Zurich can now reveal that the turtle's ancestor Eunotosaurus africanus already breathed with the aid of such a sling – even though it did not yet have a solid shell. The muscle sling was thus the anatomical prerequisite for the development of the rigid turtle shell.


The present-day extinct ancestors of turtles had a flexible ribcage and breathed, like us, by alternately expanding and contracting the lungs and thorax. The development of a solid shell on the back and belly, however, rendered this kind of respiratory process impossible.

Today’s turtles breathe with the aid of a muscle sling attached to the shell, which contracts and relaxes to aerate the lungs. An international team of researchers from North American, African and European institutes and museums have now discovered the origin of this muscle sling:

in Eunotosaurus africanus, a fossil reptile which lived in South Africa during the Middle Permian around 260 million years ago, as the study just published in Nature Communications reveals.

Instead of a rigid plastron and shell like modern turtles, Eunotosaurus merely had extremely broad, partly overlapping T-shaped ribs. “However, these already heavily restricted the freedom of movement of the ribcage” explains Torsten Scheyer from the Paleontological Institute and Museum of the University of Zurich, who is involved in the study.

Judging by the internal and external bone structures of the ribs, Eunotosaurus evidently only had reduced back muscles, but already possessed a muscle sling that aided respiration. “The small fossil reptile thus provides the explanation as to how the vital adaptation of the breathing apparatus could come about in turtle evolution,” says the UZH paleontologist.

Muscle loop enables shell development

“Eunotosaurus constitutes a morphological link between the body plan of early reptiles and the highly modified body blueprint of the turtles that exist today,” explains Scheyer. The scientists studied the rib plates, so-called costals, of turtle shells and the ribs of various fossil and living vertebrate groups, including mammals, crocodiles and even dinosaurs.

Head of the study Tyler Lyson from the Smithsonian Institution in Washington D.C. and the Denver Museum of Nature and Science, Colorado, adds that, “Based on what we know today, solid shells did not appear in fossil stem turtles until 50 million years after Eunotosaurus.”

The study shows that the steady increase of rigidity of the body wall triggered a separation of the rib and abdominal respiratory muscle functions: The increasing broadening and hardening of the body caused the ribs to become less involved in the respiratory process while the muscles increasingly took over the role. “The ribs became thus free and later completely integrated in the turtle's shell,” says Scheyer.


Literature:
Lyson, T. R., E. R. Schachner, J. Botha-Brink, T. M. Scheyer, M. Lambertz, G. S. Bever, B. Rubidge, and K. de Queiroz. Origin of the unique ventilatory apparatus of turtles. Nature Communications. November 7, 2014. 5:5211. doi: 10.1038/ncomms6211


Contacts:
Dr. Torsten M. Scheyer
University of Zurich
Paleontological Institute and Museum
8006 Zurich
Tel.: +41 44 634 23 22
Email: tscheyer@pim.uzh.ch

Bettina Jakob
Media Relations
University of Zurich
Tel.: +41 44 634 44 39
Email: bettina.jakob@kommunikation.uzh.ch


Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>