Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Turn Up the Heat in Chilies, Just Add Water

22.12.2011
Biologists have learned in recent years that wild chilies develop their trademark pungency, or heat, as a defense against a fungus that could destroy their seeds. But that doesn’t explain why some chilies are hot and others are not.

New research provides an answer: Hot chilies growing in dry areas need more water to produce as many seeds as non-pungent plants, but the Fusarium fungus is less of a threat in dryer environments so chilies in those areas are less likely to turn up the heat. In wetter regions, where Fusarium thrives, wild chilies build up their reserves of spicy capsaicin in self-defense.

“Despite the reduced benefit of pungency in dry environments, hot plants still occur there, as does the deadly fungus. That suggests that the greater presence of non-pungent plants that produce substantially more seeds is the result of a fitness-based tradeoff,” said David Haak, lead author of a paper describing the research published Wednesday (Dec. 21) in Proceedings of the Royal Society B. The Royal Society is the United Kingdom’s academy of science.

Haak, a post-doctoral researcher at Indiana University, conducted the research as part of his doctoral work at the University of Washington. Co-authors of the paper are Leslie McGinnis of the University of Michigan, who did the work while a UW undergraduate; Douglas Levey of the University of Florida and Joshua Tewksbury, a UW biology professor who leads the research group.

The scientists examined pungency differences by comparing the proportion of pungent plants with that of non-pungent plants in 12 populations of wild chilies in southeastern Bolivia along a 185-mile line that gradually progressed from a relatively dry region to a wetter region. They conducted plant censuses in focal populations five times between 2002 and 2009, and tagged plants in each census so they could determine new seedlings the next time.

They found that, starting in the dryer northeast part of the section, 15 to 20 percent of the plants had pungent fruit, and pungency increased along the line toward the wetter southwest, where they never found a single plant that did not produce pungent fruit.

They also selected three populations of chili plants that each produced both pungent and non-pungent fruit and spanned the range of rainfall and pungency differences. They then grew seeds from those plants in the UW Botany Greenhouse to examine what affect water availability had on pungency.

The 330 plants that resulted from those seeds were grown under identical conditions until they reached their first flowering, then were separated into two groups – one that received plenty of water and one that was stressed by receiving only the amount of water available to plants in the driest area of Bolivia from which seeds were taken.

The scientists found that under water-stressed conditions, non-pungent plants produced twice as many seeds as pungent plants. That suggests the pungent plants trade some level of fitness for protection from the Fusarium fungus, Haak said.

The researchers determined the pungent plants have developed a reduced efficiency in water use, so in dryer areas they produce fewer seeds and are more limited in reproduction. In wetter areas, non-pungent plants are at a reproductive disadvantage because they are much more likely to have their seeds attacked by the fungus.

“It surprised us to find that the tradeoff to produce capsaicin in pungent plants would involve this major physiological process of water-use efficiency,” Haak said.

He noted that over the entire range, 90 to 95 percent of the chili fruits had some level of fungal infection, and pungent plants were better able to defend themselves.

The research was funded by grants from the National Science Foundation; the National Geographic Society; Sigma Xi, the scientific research society; and the UW Department of Biology.

For more information, contact Haak at 206-913-8472 or dhaak@indiana.edu; or Tewksbury at 206-616-2129 or tewksjj@uw.edu.

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>