Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turbo-Packed RNA

05.11.2010
Turbo Reagent Allows Precise Synthesis of tRNA Nucleosides

Ribonucleic acid (RNA) is a biologically important molecule that is very similar to DNA, the blueprint of life. Naturally occurring RNAs, such as transfer RNA (tRNA), contain modified building blocks (“nucleosides”), which are involved in decoding genetic information.

Deazaguanosine nucleosides, in particular, are of significant interest for their antibacterial, antifungal, antiviral, and anticancer activity. In the European Journal of Organic Chemistry, Thomas Carell and his team at Munich's Ludwig Maximilians University (Germany) have now introduced a method to prepare tRNA nucleosides through a novel Turbo-Grignard-based approach with an unprecedented level of control from a common intermediate.

Because of the biological importance of deazaguanosines, a reliable method for their preparation is desirable. In this way, scientists can easily study their functions and the role they play in the treatment of diseases. One of the problems for synthetic chemists, however, is that these compounds often contain various reactive groups at several locations within the molecule. Precise control over the reactivity at a single position can therefore be difficult. Thus, the development of a site-specific reagent is required.

For their synthesis, the authors opted to use the versatile Turbo-Grignard reagent. The “normal” Grignard reagent is used by chemists to introduce a group into a molecule at a reactive site; it consists of the group to be added complexed to the metal magnesium. The Turbo-Grignard is also complexed to a lithium salt, which generally allows reactions to be performed under mild conditions – an important advantage when dealing with biologically relevant compounds.

In their article, the team shows that the Turbo-Grignard reagent has a specific point of attack and that it can be used in the presence of other reactive groups. Importantly, an adjacent group that proved problematic under different conditions was found to be completely unreactive to the turbo reagent, thereby allowing efficient synthesis of the desired nucleosides; the same reaction performed with the “normal” Grignard reagent resulted in decomposition of the desired products. The fact that other reactive groups in the molecule remain untouched facilitates the synthesis of deazaguanosine-derived tRNA nucleosides, which should enable detailed biochemical investigation of their functions in vivo and help in the treatment of genetic diseases.

Author: Thomas Carell, Ludwig-Maximilians-Universität München (Germany), http://www.cup.uni-muenchen.de/oc/carell/

Title: Efficient Synthesis of Deazaguanosine-Derived tRNA Nucleosides PreQ0, PreQ1, and Archaeosine Using the Turbo-Grignard Method

European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201000987

Thomas Carell | Wiley-VCH
Further information:
http://www.cup.uni-muenchen.de/oc/carell/
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>