Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turbo-charging pharmaceutical biotechnology simulations

12.09.2019

New simulation technology developed by TU Graz is designed to make the production of biopharmaceuticals more efficient, cost-effective and comprehensible for manufacturers.

Demand for biopharmaceuticals is strong: biopharmaceutical active ingredients – in other words, genetically engineered drugs – accounted for seven of the ten top-selling medications in the world in 2018.


Reactor detail

© TU Graz


Christian Witz from the Institute for Process and Particle Technology at TU Graz at work in front of a Plexiglas model of a stirred and gassed (bio)reactor

© TU Graz

And the proportion is set to rise, as biopharmaceuticals can be used to combat conditions such as multiple sclerosis and anaemia, as well as many forms of cancer and rare diseases, which cannot be treated with chemical and synthetic agents.

But such efficacy comes at a price. While chemically produced medicines are “small molecules” that are relatively easy to manufacture and are available in tablet form, biopharmaceutical drugs usually comprise hundreds or thousands of atoms.

This makes biopharmaceutical manufacturing extremely complex – it requires microorganisms driving reactions in bioreactors, involves expensive experiments carried out on the basis of trial and error, and is based on empirical values. “At the moment, the biotech industry lacks in-depth process knowledge. People that the manufacturing process works, but they don’t know the reasons why or how exactly it functions,” explains Christian Witz of the Institute of Process and Particle Engineering at TU Graz.

Process knowledge – the key to manufacturing efficiency

Computer-based simulations are vital for enhancing process knowledge, and could also significantly speed up the scale-up from the lab to production scale. However, the simulation programmes currently available on the market are not suitable for routine application, as they take months to perform the necessary calculations, and call for expertise with running simulations, as well as substantial computing power.

This is where Christian Witz’s research comes in. He is working on a new, user-friendly and fast simulation software that is aimed at enabling process simulation to take root in the biopharmaceutical industry. “My system will cut simulation times from months to a matter of hours. It can be operated by people without simulation know-how and runs on standard commercial graphic cards.”

The new software shortens the time needed for troubleshooting and promises more detailed insights into processes. This will help to make biopharmaceutical manufacturing more efficient. “Companies need to perform fewer experiments to make the step from the lab to industrial-scale production, saving anywhere between EUR 300,000 and EUR 1 million,” says Witz, pointing to the latest estimates.

End-to-end process simulation supports production processes

The new software, which has been used in industrial research since 2017, is based on simulation code that Witz developed for aerated and stirred bioreactors. For instance, the program simulates the movement of microorganisms in the reactor or the transport of dissolved oxygen released from air bubbles. As part of the ComBioPro project, Witz will integrate further algorithms into the software, which will allow for even more exact and user-friendly representation of physical and biochemical processes in bioreactors.

Among other things, the aim is to partially automate the evaluation of raw simulation data, and to simulate very large air bubbles in a reactor. The simulation results will ultimately feed into decision-making processes for design and production. In turn, this would enable companies to simulate more projects in a shorter time, and carry out tests showing where and how productivity losses occur in a reactor.

This comes courtesy of the unique insights that the software offers into biopharmaceutical production processes, as Witz points out: “How can we create the bioreactor conditions in which the microorganisms are at their most productive? How does the speed of the agitator or the aeration rate influence the process? Where in the reactor do excessive shear forces have an impact on the microorganisms? The simulation software helps to answer these and other questions.”

From university researcher to business owner

Christian Witz has now secured a grant for his plans under the Austrian Research Promotion Agency (FFG) Spin-off Fellowship programme. He intends to set up his own company in 2021 to provide advice to the biotechnology industry and carry out simulations on request.

The business will also sell software licences to companies that are unwilling to share their data and would prefer to run the program themselves. In the long run, Witz hopes that his business will “become the partner of choice for the biopharmaceutical industry”, whereby the simulation algorithms can also be applied to simulate other technologies in different industrial sectors.

The ComBioPro project forms part of TU Graz’s Human and Biotechnology, and Information, Communication & Computing Fields of Expertise, two of the university’s five strategic research focuses.

Wissenschaftliche Ansprechpartner:

Christian Witz
PhD MSc BSc
Institute of Process and Particle Engineering | TU Graz
Inffeldgasse 13/III, 8010 Graz
Tel. +43 (0)316 873 30416
E-mail: christian.witz@tugraz.at
ippt.tugraz.at

Weitere Informationen:

https://www.ffg.at/en/spin-off-fellowships (Further information on the Spin-off Fellowship programme)


https://www.tugraz.at/en/institutes/ippt/research/computational-bioprocess-engin... (research focus)

Mag. Christoph Pelzl | Technische Universität Graz
Further information:
http://www.tugraz.at

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>