Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor suppressor p53 prevents cancer progression in cells with missegregated chromosomes

01.02.2010
Cells missegregate a chromosome approximately once every hundred divisions. But don't be too alarmed: new research in the Journal of Cell Biology shows that the tumor suppressor p53 limits the growth of cells with incorrect numbers of chromosomes and prevents their progression toward cancer. The study appears online February 1 (www.jcb.org).

Tumor cells tend to missegregate chromosomes at a particularly high frequency (a condition known as chromosomal instability, or CIN), which is probably why they are often aneuploid (i.e., they carry an abnormal number of chromosomes).

In 2008, Sarah Thompson and Duane Compton, from Dartmouth Medical School, revealed that most CIN in tumor cells was caused by incorrect attachments between mitotic spindle microtubules and kinetochores, and that inducing misattachments in normal cells was sufficient to generate high rates of chromosome missegregation. There was a small but significant wrinkle to this story, however: normal, diploid cells stopped proliferating as soon as they gained or lost a chromosome, so they never converted into a cancer-like aneuploid cell line.

To investigate why normal cells stop proliferating when they missegregate their DNA, Thompson and Compton engineered a human cell line to carry a unique fluorescent mark on one of its chromosomes. This allowed them to identify and follow by live microscopy the cells that missegregated a chromosome.

The researchers induced missegregation and then looked for cells that had gained or lost a fluorescent mark within their genome. These cells failed to proliferate, and showed elevated levels of p53 and one of its transcriptional targets, the cell cycle inhibitor p21. Cells lacking p53 became aneuploid after induced missegregation, indicating that the p53 pathway normally serves to limit the propagation of cells with odd numbers of chromosomes.

How is p53 activated by chromosome missegregation? Thompson and Compton think that a change in chromosome number leads to an imbalance in gene expression, resulting in a stress response and cell cycle arrest that is vital to avoid cancer. "By combining loss of p53 with increased missegregation rates, we can convert a diploid cell into something …. that looks like a tumor cell," says Compton. Furthermore, these aneuploid cells develop an inherent genomic instability reminiscent of genuine cancer cells, perhaps because imbalanced gene expression also causes disruptions to mitosis.

A recent study demonstrated that chromosome missegregation initiates tumorigenesis by causing cells to lose tumor suppressors like p53. "It's like a self-fulfilling prophecy," argues Compton. "If you missegregate a chromosome encoding p53, you make the cells deficient in p53, so they're able to propagate and missegregate more chromosomes."

There are circumstances in which nontumor cells tolerate aneuploidy just fine, but, in most cases, healthy cells keep a tight check on chromosome number. "I think it affects a lot of different pathways," says Compton. "The next question to ask is which pathways are sensitive to aneuploidy, and how do tumor cells overcome those problems?"

About The Journal of Cell Biology

Founded in 1955, The Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org.

Thompson, S.L., and D.A. Compton. 2010. J. Cell Biol. doi:10.1083/jcb. 200905057.

Rita Sullivan | EurekAlert!
Further information:
http://www.rupress.org

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>