Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor-attacking virus strikes with 'one-two punch'

02.12.2009
Ohio State University cancer researchers have developed a tumor-attacking virus that both kills brain-tumor cells and blocks the growth of new tumor blood vessels.

Their research shows that viruses designed to kill cancer cells – oncolytic viruses – might be more effective against aggressive brain tumors if they also carry a gene for a protein that inhibits blood-vessel growth.

The protein, called vasculostatin, is normally produced in the brain. In this study, an oncolytic virus containing the gene for this protein in some cases eliminated human glioblastoma tumors growing in animals and significantly slowed tumor recurrence in others. Glioblastomas, which characteristically have a high number of blood vessels, are the most common and devastating form of human brain cancer. People diagnosed with these tumors survive less than 15 months on average after diagnosis.

"This is the first study to report the effects of vasculostatin delivery into established tumors, and it supports further development of this novel virus as a possible cancer treatment," says study leader Balveen Kaur, associate professor of neurological surgery and a researcher with the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. "Our findings suggest that this oncolytic virus is a safe and promising strategy to pursue for the treatment of human brain tumors.

"This study shows the potential of combining an oncolytic virus with a natural blood-vessel growth inhibitor such as vasculostatin. Future studies will reveal the potential for safety and efficacy when used in combination with chemotherapy and radiation therapy," she says.

The findings were recently published online in the journal Molecular Therapy.

Jayson Hardcastle, a graduate student in Dr. Kaur's laboratory, injected the cancer-killing virus, called RAMBO (for Rapid Antiangiogenesis Mediated By Oncolytic virus), directly into human glioblastoma tumors growing either under the skin or in the brains of mice.

Of six animals with tumors under the skin, those treated with RAMBO survived an average of 54 days. In addition, three of the RAMBO mice were tumor-free at the end of the experiment. Control animals treated with a similar virus that lacked the vasculostatin gene, on the other hand, survived an average of 26 days and none were tumor-free.

Of the animals with a human glioblastoma in the brain, five were treated with RAMBO and lived an average of 54 days. One animal remained tumor-free for more than 120 days. Control animals, by comparison, lived an average of 26 days with no long-term survivors.

In another experiment, the investigators followed the course of tumor changes in animals with tumors in the brain. After an initial period of tumor shrinkage, the remaining cancer cells began regrowing around day 13 in animals given the virus that lacked the blood-vessel inhibitor. In animals treated with RAMBO, tumor regrowth didn't begin until about day 39.

"With additional research, this virus could lead to a new therapeutic strategy for combating cancer," Kaur says.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>