Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


TU Bergakademie Freiberg researches virus inhibitors from the sea


For several years now, scientists at TU Freiberg have been researching the unique properties of Aplysina aerophoba, a marine sponge species that naturally produces antiviral substances. The substance can inhibit the growth of viruses as well as the entry of viruses into cells. Since the scientists have succeeded in extracting larger amounts of the substance, it could now even be used in clinical trials against the Covid-19 pathogen.

Responsible for the antiviral, antibacterial and antiparasitic effect are the so-called bromtyrosines, which the Aplysina sponge always produces when its tissue has been damaged and it subsequently wants to defend itself against various pathogens.

The crystals of the aeroplysinin substance with strong antiviral effect.

Photo: Prof. Hermann Ehrlich

The natural chemical defence strategy developed by the sponge species during the course of evolution: the breakdown of the connections between the tissue cells leads to a rapid chemical reaction at the injured site.

The product of the reaction, the amino acid derivative bromtyrosine, destroys invading foreign bodies, but also viruses and bacteria immediately. In this way, the active ingredient inhibits protein synthesis and thus the proliferation of RNA viruses - including the coronavirus SARS-CoV-2 - and also prevents viruses from entering the tissue cells.

The Freiberg scientists were able to demonstrate this mechanism of action in pre-clinical studies using tumour cells as an example. In cooperation with the University Hospital Dresden, they did not find any cytotoxic effects on the cells.

"We have succeeded in isolating these bioactive substances in a purely crystalline form, in such quantities (i.e. considerably more than 10 grams) that they are available for immediate clinical investigations against the COVID-19 pathogen," explains Prof. Dr. Hermann Ehrlich from the Biomineralogy and Extreme Biomimetics research group at the TU Bergakademie Freiberg. "In the current situation we are of course open to cooperation with the relevant authorities and institutions," said Ehrlich.

Extracting valuable substance in an environmentally friendly way

In recent years, researchers have been able to extract up to 100% of the valuable bromtyrosine from the sponge thanks to a new method. "We use microwave radiation to isolate and extract the bromine tyrosine from the cells and skeletal fibres of the cultured sponges," explains the head of the Biomineralogy Laboratory at the Institute for Electronic and Sensor Materials.

In cooperation with the Saxon start-up company BromMarin GmbH, Prof. Ehrlich and his team are continuing their research into the ecological method, which involves the cutting off of only part of the sponge under water, thereby completely preserving its regenerative capacity.

The marine horn sponge Aplysina aerophoba

The marine horn sponge Aplysina aerophoba has been growing in the shallow coastal areas of warm seas for more than 500 million years. Today, the largest occurrences of this sponge species are found in the European Mediterranean, especially off the coast of Montenegro, Croatia and Albania.

Since 2014, scientists of the TU Bergakademie Freiberg together with marine biotechnologists of the Institute of Marine Biology in Kotor, Montenegro, have been supervising a 100 square metre sponge breeding facility.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Hermann Ehrlich, Phone: +49 3731 39 2867


The Freiberg researchers recently published their results in the journal "Materials Science and Engineering" under the title: Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge.

Luisa Rischer | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>