Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TSRI scientists pinpoint Ebola's weak spots

09.08.2016

New study illuminates structure of mystery protein

Scientists at The Scripps Research Institute (TSRI) now have a high-resolution view of exactly how the experimental therapy ZMapp targets Ebola virus.


The Scripps Research team succeeded in showing how experimental therapy ZMapp targets the Ebola virus, here targeting the virus's GP protein.

Image courtesy of Andrew Ward and Jesper Pallesen

The new study is also the first to show how an antibody in the ZMapp "drug cocktail" targets a second Ebola virus protein, called sGP, whose vulnerable spots had previously been unknown.

"This sGP protein is tremendously important," said TSRI Professor Erica Ollmann Saphire, who co-led the study with TSRI Associate Professor Andrew Ward. "This is the roadmap we need to target the right molecules in infection."

"Determining the proper balance in targeting these two Ebola proteins will be key to building improved therapeutics," added Ward.

The study was published August 8, 2016 in the journal Nature Microbiology.

Zooming in on ZMapp

Scientists need detailed images of Ebola virus's molecular structure. Like enemy reconnaissance, structures can show where Ebola is vulnerable and how medical treatments can neutralize it.

TSRI scientists are harnessing an imaging technique called cryo-electron microscopy (in which a sample is pelted with electrons) to create high-resolution, 3-D images of Ebola virus and the antibodies that fight it.

"We're at the cutting edge of our ability to resolve high-resolution protein complexes," said TSRI Research Associate C. Daniel Murin, co-first author of the new study with TSRI Research Associate Jesper Pallesen.

In the new study, the researchers used cryo-electron microscopy to see exactly how Ebola virus interacts with the three antibodies in the ZMapp experimental therapy produced by Mapp Biopharmaceutical, also a study collaborator.

The researchers had imaged these interactions at a low resolution in a 2014 study, but the new study revealed substantially more details, including the exact angles the antibodies use to approach the molecule on the surface of the virus, termed its surface glycoprotein (GP), and the individual amino acid contact points at which the antibodies bind GP. This information provides new clues to researchers trying to make the antibodies even more effective.

"The three components of ZMapp, now resolved at high-resolution, can be further engineered in a structure-based manner for improved potency," said Ward.

Solving an Elusive Structure

Next, the researchers took a closer look at one of the three antibodies that make up ZMapp, called 13C6. This antibody is unique because it can also target the soluble Ebola protein sGP.

sGP's role in infection is a mystery. Ebola virus makes the protein profusely, indicating that it is important, but then sGP appears just to float in a person's blood serum. One theory is that sGP may be essential in the natural host "reservoir."

"Eighty to ninety percent of what Ebola virus makes in infection is this shed molecule," said Saphire. "It's like a smoke screen, and we need to know where it is similar to our target GP and where it is different."

To add to the mystery, Ebola makes GP and sGP using the same gene. A small difference in the way the gene is read changes how the molecules are shaped and changes their roles.

One obstacle to understanding sGP is that it is too small to be seen with cryo-electron microscopes. To solve this problem, the researchers added "bulk" by pairing sGP with antibodies, including 13C6. This allowed them to kill two birds with one stone--they could see sGP's structure while also studying how antibodies interact with it.

The new image shows the binding sites, or "epitopes," the antibody targets. "We can see hot spots on this virus that we can hit," said Pallesen.

This study is the latest research from the Viral Hemorrhagic Fever Consortium, an international partnership of research institutes led by Saphire. The researchers said collaboration with the consortium was key to this study, allowing scientists to share samples and data, including viral genetic sequences isolated from patients in the most recent Ebola outbreak.

###

In addition to Saphire, Ward, Murin and Pallesen, authors of the study, "Structures of Ebola virus GP and sGP in complex with therapeutic antibodies," [http://www.nature.com/articles/nmicrobiol2016128] were Natalia de Val, Christopher A. Cottrell, Kathryn M. Hastie, Hannah Turner and Marnie Fusco of TSRI; Kristian G. Andersen of TSRI and the Scripps Translational Science Institute; Andrew I. Flyak and James E. Crowe of Vanderbilt University and Larry Zeitlin of Mapp Biopharmaceutical.

This study was supported by the National Institutes of Health (NIH, grant R01 AI067927), the NIH's National Institute of Allergy and Infectious Diseases (grant U19AI109762 and U19AI109711) and the National Science Foundation.

Media Contact

Madeline McCurry-Schmidt
858-784-9254

 @scrippsresearch

http://www.scripps.edu 

Madeline McCurry-Schmidt | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>