Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trudeau Institute reports new approach to treating Listeria infections

18.10.2011
Strategy could lead to new treatments for sepsis

Research underway at the Trudeau Institute could lead to new treatments for people sickened by Listeria and other sepsis-causing bacteria. Dr. Stephen Smiley's laboratory has published a study in the scientific journal Infection and Immunity that supports a new approach to treating these infections.

Listeria can cause serious illness, especially among the elderly, the very young and those with compromised immune systems. The bacteria can also cause significant complications in pregnant women, including miscarriage.

The CDC is reporting that one miscarriage and 23 deaths can be attributed to a recent outbreak of Listeria infections in the United States caused by tainted cantaloupes; 116 persons from 25 states have been infected with the outbreak-associated strains.

Ingestion of Listeria usually causes a limited gastrointestinal illness; however, the bacteria sometimes spread to other parts of the body, resulting in a deadly sepsis. Despite decades of medical research, severe infections caused by Listeria and other bacteria that cause sepsis, like MRSA, still threaten human health.

The Trudeau Institute study demonstrates that mice that have been genetically modified so they cannot produce factor XI (FXI), a specific blood-clotting factor, have an improved capacity to withstand injection with high doses of Listeria. The study also shows that normal mice treated with both an antibody targeting FXI along with antibiotics show improved survival during septic Listeria infection, as compared with mice treated with antibiotics alone.

These findings suggest FXI-targeted therapeutics may be useful for treating severe infections caused by Listeria and other sepsis-causing bacteria.

This recent work builds on a long history of Listeria research at the Trudeau Institute. In the 1960s the Institute's first director, Dr. George B. Mackaness, advanced the use of mouse models to study how cells of the immune system combat Listeria. He discovered that activated macrophages play a critical role in killing Listeria. He also discovered that lymphocytes, another type of immune cell, orchestrate this killing response. These seminal observations remain the foundation for modern studies of cell-mediated defense against pathogens.

The Trudeau Institute's second director, Dr. Robert J. North, extended this work by identifying the key subset of anti-Listeria lymphocytes: T cells. Dr. North and his Trudeau colleagues also described crucial roles for NK cells and neutrophils.

Several years ago, Dr. Smiley discovered that blood-clotting proteins also play critical protective roles during immune defense against Listeria. "I was really intrigued by our finding that clotting protects against Listeria because so many other studies had shown that clotting clogs blood vessels and contributes to organ failure and death during septic infections," said Dr. Smiley.

"Our finding suggested that some degree of blood clotting is essential for effective immune defense, but too much is harmful. We set out in search of ways to prevent the bad clotting while maintaining the good."

Specifically, Dr. Smiley's lab looked for clotting factors that appeared to be hyperactive in the septic state.

"The paper we've just published is our first demonstration of this exciting new approach to treating sepsis – we found that FXI is overproduced during septic Listeria infections and that therapeutics targeting FXI can reduce septic disease while maintaining immune defense."

Postdoctoral fellow Deyan Luo, assisted by Frank Szaba and Larry Kummer, led the research in the Smiley lab. Dr. Lawrence Johnson from the Trudeau Institute, Dr. David Gailani from Vanderbilt University, and Drs. Andras Gruber and Erik Tucker from the Oregon Health & Science University also made essential contributions.

About the Trudeau Institute

The Trudeau Institute is an independent, not-for-profit, biomedical research organization, whose scientific mission is to make breakthrough discoveries leading to improved human health. Trudeau researchers are identifying the basic mechanisms used by the immune system to combat viruses like influenza, mycobacteria, such as tuberculosis, parasites and cancer, so that better vaccines and therapies can be developed for fighting deadly disease.

The research is supported by government grants and philanthropic contributions.

Kim Godreau | EurekAlert!
Further information:
http://www.trudeauinstitute.org

More articles from Life Sciences:

nachricht Dead cells disrupt how immune cells respond to wounds and patrol for infection
21.05.2019 | University of Sheffield

nachricht New study shows: Tropical corals reflect ocean acidification
21.05.2019 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>