Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical coral reefs lose two thirds of their zooplankton through ocean acidification

21.09.2016

Dramatic decline has serious consequences for coral reefs

Tropical coral reefs lose up to two thirds of their zooplankton through ocean acidification. This is the conclusion reached by a German-Australian research team that examined two reefs with so-called carbon dioxide seeps off the coast of Papua New Guinea. At these locations volcanic carbon dioxide escapes from the seabed, lowering the water’s acidity to a level, which scientists predict for the future of the oceans.


A tropical reef, affected by ocean acidification

Alfred-Wegener-Institut / Joy N. Smith

The researchers believe that the decline in zooplankton is due to the loss of suitable hiding places. It results from the changes in the coral reef community due to increasing acidification. Instead of densely branched branching corals, robust mounding species of hard coral grow, offering the zooplankton little shelter. In a study published on 19 September 2016 at the online portal of the journal Nature Climate Change, the researchers report that the impact on the food web of the coral reefs is far-reaching, since these micro-organisms are an important food source for fish and coral.

The volcanic carbon dioxide sources off the coast of Papua New Guinea are a unique natural laboratory. "Here, we can already observe under natural conditions how the reefs may change when the world's oceans absorb more and more carbon dioxide from the atmosphere and the acidity of their water rises due to climate change," says coral expert and study co-author Prof Claudio Richter of the Alfred Wegener Institute, the Helmholtz Centre for Polar and Marine Research.

The extent of the ocean acidification is indicated by the pH of the water. The lower this value, the more acidic the water. In tropical seas, researchers usually measure a pH of 8.0 or higher. If this value drops due to acidification, though, the species which are important for a coral reef disappear.

"Our study shows that, in the course of ocean acidification, the structure of the reef fundamentally changes," says lead author Joy Smith from the Australian Institute of Marine Science. "While many branching corals dominate under normal pH conditions offering ample hiding space for the different species of zooplankton, ocean acidification shifts the community to large, massive bouldering corals, which offer the reef-associated plankton little opportunity for hiding".

The new research results show that the reefs lose two thirds of their zooplankton in this way. "This decline has far-reaching consequences for the community of life on the reef. For one thing, many fish species feed on zooplankton. On the other hand, the corals are also dependent on the floating food. Given the ever warmer and more acidic water, corals have to channel more energy into calcification, the energy-demanding process governing the formation of their calcium carbonate skeletons. The coral satisfy this additional energy requirement as well as the need for essential nitrogen and phosphorus compounds by eating zooplankton – an option that would become narrower with increasing ocean acidification," says Claudio Richter.

For this study, the researchers carried out three expeditions to two reefs in the Milne Bay Province in the east of Papua New Guinea. In each case, there were both acidified areas with a pH value of 7.8 as well as areas with a normal pH value, enabling the researchers to compare the data from acidified and non-acidified 'controls'.
A total of 29 different groups of zooplankton were identified that were hiding in the reef during the day and ascending to eat in the water column after nightfall. "To our surprise, almost all of them were affected by the decline. There were none that completely disappeared, though," says Claudio Richter.

The research was conducted as part of the German cooperative project BIOACID. Under the umbrella of BIOACID (Biological Impacts of Ocean Acidification), ten institutes have been examining how biological marine communities respond to ocean acidification and what consequences this has for the food chain, the material and energy turnover in the sea and, finally, also for the economy and society. The project began in 2009 and entered the third, final funding phase in October 2015. BIOACID is funded by the Federal Ministry of Education and Research (BMBF). The program is coordinated by the GEOMAR Helmholtz Centre for Ocean Research Kiel. A list of member institutions, information about the scientific program and the BIOACID bodies as well as facts about ocean acidification can be found at the website http://www.bioacid.de.

Lead author Joy N. Smith was funded through the EU doctoral program MARES. She gained doctoral degrees from the universities of Bremen and Plymouth.

Notes for Editors:
The study has been published under the following title in the journal Nature Climate Change:
Joy N. Smith, Glenn De’ath, Claudio Richter, Astrid Cornils, Jason M. Hall-Spencer and Katharina E. Fabricius: Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs, Nature Climate Change, DOI: 10.1038/nclimate3122

You can find printable photos at the following link: http://www.awi.de/nc/en/about-us/service/press/press-release/tropische-korallenriffe-verlieren-durch-ozeanversauerung-zwei-drittel-ihres-zooplanktons.html

Your scientific contact person at the Alfred Wegener Institute is:
• Prof Claudio Richter (Tel: +49(471)4831-1304; E-mail: Claudio.Richter(at)awi.de)

Your contact in the Communications and Media department is Sina Löschke (Tel.: +49 (0)471 4831 - 2008; e-mail: medien(at)awi.de).

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid latitude oceans. It coordinates polar research in Germany and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic for the international science community. The Alfred Wegener Institute is one of the 18 research centres belonging to the Helmholtz Association, Germany's largest scientific organisation.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>