Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trinity scientists make breakthrough in understanding Parkinson's disease

14.11.2014

Trinity scientists make breakthrough in understanding how parkin, a gene implicated in Parkinson's disease, controls the repair and replacement of nerve cells

  • The scientists showed that the Parkin protein functions to repair or destroy damaged nerve cells, depending on the degree to which they are damaged
  • People living with Parkinson's disease often have a mutated form of the Parkin gene, which may explain why damaged, dysfunctional nerve cells accumulate

Parkin-expressing cells (red) are undergoing programmed cell death.

Credit: Dr. Emilie Hollville and Professor Seamus Martin, Trinity College Dublin


Parkin-expressing cells (red) are undergoing programmed cell death.

Credit: Dr. Emilie Hollville and Professor Seamus Martin, Trinity College Dublin


Scientists at Trinity College Dublin have made an important breakthrough in our understanding of Parkin - a protein that regulates the repair and replacement of nerve cells within the brain. This breakthrough generates a new perspective on how nerve cells die in Parkinson's disease.

The Trinity research group, led by Smurfit Professor of Medical Genetics, Professor Seamus Martin, has just published its findings in the internationally renowned, peer-reviewed Cell Press journal, Cell Reports.

Although mutation of Parkin has been known to lead to an early onset form of Parkinson's for many years, understanding what it actually did within cells has been difficult to solve.

Now, Professor Martin and colleagues have discovered that in response to specific types of cell damage, Parkin can trigger the self-destruction of 'injured' nerve cells by switching on a controlled process of 'cellular suicide' called apoptosis.

Using cutting-edge research techniques, the Martin laboratory, funded by Science Foundation Ireland, found that damage to mitochondria (which function as 'cellular battery packs') activates the Parkin protein, which results in one of two different outcomes - either self-destruction or a repair mode. Which outcome was chosen depended on the degree of damage suffered by the cellular battery packs.

Importantly, these new findings suggest that one of the problems in Parkinson's disease may be the failure to clear away sick nerve cells with faulty cellular battery packs, to make way for healthy replacements. Instead, sickly and dysfunctional nerve cells may accumulate, which effectively prevents the recruitment of fresh replacements.

Commenting on the findings, Professor Martin stated: "This discovery is surprising and turns on its head the way we thought that Parkin functions. Until now, we have thought of Parkin as a brake on cell death within nerve cells, helping to delay their death. However, our new data suggests the contrary: Parkin may in fact help to weed out injured and sick nerve cells, which probably facilitates their replacement. This suggests that Parkinson's disease could result from the accumulation of defective neurons due to the failure of this cellular weeding process."

Professor Martin also added: "We are very grateful for the support of Science Foundation Ireland, who funded this research. This work represents an excellent example of how basic research leads to fundamental breakthroughs in our understanding of how diseases arise. Without such knowledge, it would be very difficult to develop new therapies."

The work was carried out in Trinity's School of Genetics and Microbiology. The research team was led by Professor Martin and included Trinity PhD student Richard Carroll and Research Fellow Dr Emilie Hollville. The Trinity research team is internationally recognised for its work on the regulation of cell death.

For media queries, please contact:

Thomas Deane, Press Officer for the Faculty of Engineering, Mathematics and Science, Trinity College Dublin, at deaneth@tcd.ie or Tel: +353-1-896-4685 / +353-85-131-5587

Smurfit Professor of Medical Genetics, Seamus Martin, Trinity College Dublin, at martinsj@tcd.ie

Notes to the editor:

1. Full title of the journal article is: 'Parkin Sensitizes toward Apoptosis Induced by Mitochondrial Depolarization through Promoting Degradation of Mcl-1, Cell Press journal, Cell Reports

About Trinity College Dublin

Trinity College Dublin, founded in 1592 is Ireland's oldest university and today has a vibrant community of 17,000 students. It is recognised internationally as Ireland's premier university. Cutting edge research, technology and innovation places the university at the forefront of higher education in Ireland and globally. It encompasses all major academic disciplines, and is committed to world-class teaching and research across the range of disciplines in the arts, humanities, engineering, science, social and health sciences.

Trinity is Ireland's leading university across all international rankings, and was ranked 61st globally in 2013 QS World University Ranking http://www.tcd.ie .

High-resolution images and captions are available, and can be accessed from this Dropbox folder: https://www.dropbox.com/sh/cyd6sf5eazbqsr0/AAB7uFMeI9-CbxVbJ4L7L3Cfa?dl=0

Thomas Deane | EurekAlert!

Further reports about: Genetics Parkin Trinity accumulate battery cell death damage nerve cells repair

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>