Some trees 'farm' bacteria to help supply nutrients

“In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition,” says Stéphane Uroz, an author on the study.

Certain microbes are efficient at breaking down inorganic minerals into nutrients. This process, called mineral weathering, is especially important in acidic forest soils where tree growth can be limited by access to these nutrients. Mineral-weathering bacteria can release necessary nutrients such as iron from soil minerals. This gives trees with increased concentrations of mineral-weathering microbes an advantage over other trees.

Distinct impacts of the tree species on the soil bacterial community structure have been previously reported, suggesting that the composition and activity of soil bacterial communities depend on tree physiology and notably on its impact on the soil physicochemical properties and nutrient cycling. However, no study has ever addressed the question of the impact of tree species on the structure of forest soil bacterial communities involved in mineral weathering.

“This question regarding the impact of tree species on the functional diversity of the bacterial communities remains a major issue in forestry, especially in the context of today's climate change, which will give rise to a shift in the spatial distribution of forest tree species” says Uroz.

The researchers took soil samples from the root areas of beech, oak and Norway spruce trees and cultured them to determine the bacterial populations. They observed heightened levels of mineral-weathering bacteria in the samples near the roots of oak and beech trees compared to surrounding soil samples. This difference was not seen in the Norway spruce samples.

“Our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials” says Uroz.

Media Contact

Garth Hogan EurekAlert!

More Information:

http://www.asmusa.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors