Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree of life study unveils inner workings of a cell

08.09.2015

Scientists create world's largest protein map to reveal which proteins work together in a cell

A multinational team of scientists have sifted through cells of vastly different organisms, from amoebae to worms to mice to humans, to reveal how proteins fit together to build different cells and bodies.


Scientists have uncovered tens of thousands of new protein interactions, accounting for about a quarter of all estimated protein contacts in a cell.

Credit: Jovana Drinkjakovic

This tour de force of protein science, a result of a collaboration between seven research groups from three countries, led by Professor Andrew Emili from the University of Toronto's Donnelly Centre and Professor Edward Marcotte from the University of Texas at Austin, uncovered tens of thousands of new protein interactions, accounting for about a quarter of all estimated protein contacts in a cell.

When even a single one of these interactions is lost it can lead to disease, and the map is already helping scientists spot individual proteins that could be at the root of complex human disorders. The data will be available to researchers across the world through open access databases.

The study comes out in Nature on September 7.

While the sequencing of the human genome more than a decade ago was undoubtedly one of the greatest discoveries in biology, it was only the beginning of our in-depth understanding of how cells work. Genes are just blueprints and it is the genes' products, the proteins, that do much of the work in a cell.

Proteins work in teams by sticking to each other to carry out their jobs. Many proteins come together to form so called molecular machines that play key roles, such a building new proteins or recycling those no longer needed by literally grinding them into reusable parts. But for the vast majority of proteins, and there are tens of thousands of them in human cells, we still don't know what they do.

This is where Emili and Marcotte's map comes in. Using a state-of-the-art method developed by the groups, the researchers were able to fish thousands of protein machineries out of cells and count individual proteins they are made of. They then built a network that, similar to social networks, offers clues into protein function based on which other proteins they hang out with. For example, a new and unstudied protein, whose role we don't yet know, is likely to be involved in fixing damage in a cell if it sticks to cell's known "handymen" proteins.

Today's landmark study gathered information on protein machineries from nine species that represent the tree of life: baker's yeast, amoeba, sea anemones, flies, worms, sea urchins, frogs, mice and humans. The new map expands the number of known protein associations over 10 fold, and gives insights into how they evolved over time.

"For me the highlight of the study is its sheer scale. We have tripled the number of protein interactions for every species. So across all the animals, we can now predict, with high confidence, more than 1 million protein interactions - a fundamentally 'big step' moving the goal posts forward in terms of protein interactions networks," says Emili, who is also Ontario Research Chair in Biomarkers in Disease Management and a professor in the Department of Molecular Genetics.

The researchers discovered that tens of thousands of protein associations remained unchanged since the first ancestral cell appeared, one billion years ago (!), preceding all of animal life on Earth.

"Protein assemblies in humans were often identical to those in other species. This not only reinforces what we already know about our common evolutionary ancestry, it also has practical implications, providing the ability to study the genetic basis for a wide variety of diseases and how they present in different species," says Marcotte.

The map is already proving useful in pinpointing possible causes of human disease. One example is a newly discovered molecular machine, dubbed Commander, which consists of about a dozen individual proteins. Genes that encode some of Commander's components had previously been found to be mutated in people with intellectual disabilities but it was not clear how these proteins worked.

Because Commander is present in all animal cells, graduate student Fan Tu went on to disrupt its components in tadpoles, revealing abnormalities in the way brain cells are positioned during embryo development and providing a possible origin for a complex human condition.

"With tens of thousands of other new protein interactions, our map promises to open many more lines of research into links between proteins and disease, which we are keen to explore in depth over the coming years," concludes Dr. Emili.

Media Contact

Jovana Drinjakovic
jovana.drinjakovic@gmail.com
416-946-8253

 @UofTNews

http://www.utoronto.ca 

Jovana Drinjakovic | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>