Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Treatment for Lead Poisoning Coming Soon?

15.01.2009
Removing lead from blood with selective lead receptors and magnetic nanoparticles

Lead is one of the most dangerous heavy metals and is especially toxic to children. Safe and effective detoxification processes are needed. As reported in the journal Angewandte Chemie, a Korean team led by Won Seok Han and Jong Hwa Jung has developed a new, highly promising approach.

It is based on a fluorescence receptor that selectively and strongly binds to lead ions. The trick: the receptor is bound to magnetic nanoparticles and can be removed, along with their lead cargo, in a simple hemodialysis procedure using magnets. By using these magnetic particles, the researchers were able to remove 96 % of the lead ions from blood samples mixed with lead in vitro.

Lead and lead salts are mainly ingested in foods or drinking water. Lead pipes and lead-containing glazes on ceramic vessels are often a source of lead. Usually, it is not acute lead poisoning that occurs, but rather gradual lead poisoning, in which smaller amounts of the metal are accumulated over a long period of time.

Symptoms such as muscle weakness, disorientation, memory loss, and anemia are the result. Currently, lead poisoning is treated with chelation therapy, which has serious side effects: the chelates bind to other minerals and trace elements as well as lead, removing these vital materials from the body as well. Now an alternative is on the horizon.

The researchers’ idea starts with special probes used for the detection of various specific metal ions, including lead. When a lead ion binds to such a “lead receptor”, the receptor’s fluorescence is “switched on”, causing it to glow. The receptor binds to no other metal ions, only lead. Perhaps a selective lead detector could be used for detoxification, as well as detection. The scientists synthesized a derivative of such a lead detector and also equipped the molecule with a special chemical “anchor”. They used this anchor to attach the receptor molecules to the surface of magnetic nanoparticles made of silicon-dioxide-coated nickel.

Detoxification could theoretically work like hemodialysis: the blood is diverted out of the body and into a special chamber containing the biocompatible magnetic particles. By using magnetic fields, the charged magnetic particles could be fished out. The purified blood is then reintroduced to the patient. In contrast to chelation therapy, no vital minerals or trace elements would be removed from the body in this process.

Author: Jong Hwa Jung, Gyeongsang National University, Jinju (Korea), mailto:jonghwa@gnu.ac.kr

Title: A Selective Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ from Human Blood

Angewandte Chemie International Edition 2009, 48, No. 7, doi: 10.1002/anie.200804714

Jong Hwa Jung | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>