Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traumatic injury sets off a 'genomic storm' in immune system pathways

08.12.2011
Massive, consistent changes in inflammatory gene expression seen in trauma, burns

Serious traumatic injuries, including major burns, set off a "genomic storm" in human immune cells, altering around 80 percent of the cells' normal gene expression patterns. In a report to appear in the December Journal of Experimental Medicine, members of a nationwide research collaborative describe the initial results of their investigation into the immune system response to serious injury, findings which have overturned some longstanding assumptions.

"We have discovered there is a highly reproducible genomic response to injury that is essentially the same – no matter the patient's individual genetic background, whether the injury was caused by major trauma or serious burns, or if recovery is rapid or complicated," says Ronald G. Tompkins, MD, ScD, director of the Sumner Redstone Burn Center at Massachusetts General Hospital (MGH) and principal investigator of the study. "When this project was organized more than a decade ago, the question was raised whether responses would differ so much from person to person that no patterns would appear. It is amazing how similar our responses to injuries like serious burns or trauma actually are."

The Inflammation and Host Response to Injury consortium (http://www.gluegrant.org) was established in 2001 to investigate how the human body responds to injury and what factors set off excessive, uncontrolled inflammation that can lead to the overwhelming body-wide infection called sepsis or to multi-organ dysfunction syndrome, a life-threatening failure of vital systems. To lay the groundwork for further studies, the research team analyzed whole-genome expression patterns in white blood cells from 167 patients being treated for severe trauma at seven U.S. hospitals. Blood samples were taken within 12 hours of the injury and several times during the next 28 days. Gene expression pattern changes were tracked and compared with samples from 133 patients treated for serious burns, 37 healthy controls and four volunteers treated with a bacterial toxin that produces brief flu-like symptoms.

The genomic changes seen in the trauma and burn patients were essentially the same, with immediate increased expression of pathways involved with inflammation and with the first-response innate immune system along with simultaneous suppression of adaptive immune pathways. Over time these patterns changed only in terms of intensity and duration, which runs counter to a widely accepted theory that the initial pro-inflammatory response would be followed by an anti-inflammatory response that opens the door to complications like sepsis and organ failure. Instead the only differences between patients with and without complications were in the magnitude of gene expression changes and how long they lasted. Even the volunteers who received bacterial toxin, whose symptoms lasted for only 24 hours, had similar changes in 40 percent of the gene pathways that were altered in the seriously injured patients.

"Burn patients may take months to years to recover from their injuries, while trauma patients who are going to recover usually do so within a month. So it was entirely unexpected that gene expression patterns in burns and trauma patients changed in exactly the same directions 91 percent of the time," Tompkins explains. "Also if you consider two patients with identical injuries from a serious auto accident – a 20-year old who is ready to go home in a week and a 55-year-old who is still in the ICU and on a ventilator at the same point in time – it would be logical to think that the complications suffered by the older patient must have a genome-based difference. But it turns out that the gene expression changes are the same and the only differences is how much they change and how soon they return to normal. There are no new genes or pathways recruited to deal with those serious complications beyond those already involved in the body's basic response to serious injury.

"With this knowledge we can begin to design therapies to promote improvement in patients who would otherwise have complicated recoveries," he adds. "We also can look at whether measuring genomic changes soon after injury can help us predict which patients will recover well and which will need the maximal treatment typically delivered in ICUs, which in addition to being expensive, can sometimes be harmful." Tompkins is the Sumner M. Redstone Professor of Surgery at Harvard Medical School.

The nationwide collaborative program – which includes investigators from 20 academic research centers around the country – is supported by a grant from the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. "We funded this nationwide, multidisciplinary team of researchers to explore how the body responds to life-threatening traumatic injury," said Scott Somers, PhD, of the NIGMS. "The scientists have now created a detailed picture of the genomic aspects of this response, and among their findings are some surprises about the role of inflammation that could point to new strategies for treatment."

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $700 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>